00352 - 27 28 15 38 | mycon@mycon.lu

00352 - 27 28 15 38 | mycon@mycon.lu

BEST PRACTICE GUIDE ON ASBESTOS

CONTENTS

FOREWORD

The European Conference on Asbestos Hazards, held in Dresden in 2003 and attended by representatives from many European countries, the EU Commission and the ILO, drew attention to the fact that asbestos is still the most significant carcinogenic toxic substance in the workplace in most countries. With an estimated 20,000 deaths due to lung cancer and 10,000 cases of mesothelioma annually in industrialised countries in Western Europe, North America and Japan, it is clear that exposure to asbestos is still a major health problem that needs to be put back on the agenda and given top priority in our prevention activities. Asbestos remains central to all measures to safeguard workers' health.

According to European legislation, the marketing and use of products or substances containing asbestos were banned from January 2005 (Directive 1999/77/EC). Even stricter measures to protect workers from the risk of exposure to asbestos fibres have been in force since 15 April 2006 (Directive 2003/18/EC, which complements Directive 83/477/EEC). However, despite this legal framework, in practice the problem of how to prevent exposure to asbestos during removal, demolition, maintenance or servicing activities remains. In addition, in today's era of close economic ties and globalisation, we must be careful not to counteract our efforts by re-importing materials containing asbestos.

In line with the recommendations of the Dresden Declaration, the Senior Labour Inspectors Committee (SLIC) has formed a working group to produce practical guidance on best practice for activities involving the risk of exposure to asbestos and to conduct a European campaign in 2006 to monitor the implementation of the relevant directives.

The "Guide to Optimal Procedures

  • Helps to identify and raise awareness of the presence of asbestos and asbestos products in the use, maintenance and repair of plant, equipment and buildings.
  • Describes best practices for removing asbestos (including dust suppression, dust containment and protective equipment) and handling asbestos-cement products and wastes
  • Supports an approach to protective equipment and clothing that takes into account human factors and individual differences.

It will be available to employers and employees.

The labour inspection campaign will be carried out in the second half of 2006 in all Member States of the European Union to protect the health of workers in all work involving the maintenance, demolition, removal or disposal of materials containing asbestos. The inspections will be carried out by national labour inspectorates (and health authorities if they are competent). The aim of the campaign is to support the implementation of Directive 2003/18/EC (which supplements Directive 83/477/EEC), which should be implemented by all Member States of the European Union by 15 April 2006 at the latest. The inspection campaign is preceded by information and briefing activities.

For our partners outside Europe, the labour inspectorates of the EU Member States offer their support. Existing SLIC training materials, 2006 campaign materials and best practice guides can be used in any other country where there is a willingness to address the health risks associated with asbestos and its use. For this, ILO Convention 162 can serve as a minimum standard. This convention and the examples of best practice represent the minimum level below which the international community should not fall.

Dear Reader, Dear Reader,

this "practical guide to best practice in preventing or minimising asbestos-related risks in work involving (or likely to involve) asbestos" is the result of joint collaboration between the Senior Labour Inspectors Committee (SLIC) and employers' and workers' representatives on the EU Committee's Advisory Committee on Safety and Health and represents a further step away from asbestos in European workplaces. We hope you will read this guide and keep it handy.

The main target groups are employers, workers and labour inspectors.

  • For employers, the guide provides information on the latest technical, organisational and personal health and safety measures that they are obliged to apply.
  • For the worker, the guide provides information on protective measures, focusing on the key issues for which
    the worker should be trained, and motivates to actively contribute to safe and non-harmful working conditions.
    contribute.
  • For the labour inspector, the guide describes the key aspects that should be examined during the inspection visit.

The guide is made available through a special website of the European Agency for Safety and Health at Work where you will find additional information and specific links to national health and safety websites related to the risk of exposure to asbestos.

http://osha.eu.int/OSHA

Beyond its use in the 2006 asbestos inspection campaign, the guide aims to be a useful tool for all stakeholders in the field of work-related

asbestos exposure to create a common European basis with regard to best practices.

 

Dr Bernhard Brückner 
Deputy Director 
Dept. for Health and Safety an 
Workplace
Hessian Ministry of Social Affairs 
Germany

Mr Jose-Ramon Biosca de Sagastuy Head of Institution Head of Institution DG Labour, Social Affairs and Equal Opportunities Health, Safety and Hygiene at Work Luxembourg

1. INTRODUCTION

This guide was produced by the Senior Labour Inspectors Committee (SLIC) in collaboration with the Advisory Committee on Safety and Health (ACSH) of the social partners (trade union and employer representatives) with the aim of providing labour inspectors, employers and workers across Europe with a common source of information accessible to all. Developed in support of the 2006 asbestos campaign, the guide should continue to be useful thereafter. It should therefore evolve with future advances in best practice.

The scope of this guide is ambitious in that information is presented on three scenarios:

  • Work where asbestos may be involved (e.g. in buildings where there is a risk of asbestos being found unexpectedly due to incomplete documentation or incomplete removal).
  • Work where low exposure to asbestos dust is expected
  • Work involving a greater risk of exposure to asbestos dust and carried out by specialist companies

Therefore, the guide includes several chapters relevant to all three scenarios, as well as some chapters specifically dedicated to each scenario.

  • Chapters 1 to 4 provide background information These chapters describe what asbestos is, its effects on health, the materials that contain asbestos and where they are found.
  • Chapters 5 to 7 describe the planning and preparatory work to be done before work is carried out, for example: the risk assessment; the preparation of written instructions (or the work plan); the process used to decide what work is to be carried out and whether it is to be treated as reportable; whether medical surveillance is required; the training that staff receive
  • Chapters 8 to 12 describe the practical organisation for carrying out work where workers are or may be exposed to asbestos. Chapter 8 describes the equipment required, chapter 9 the general approach to controlling Chapter 10 describes codes of practice for maintenance work where there is a risk of exposure to asbestos, chapter 11 presents codes of practice for low-risk work and chapter 12 describes codes of practice for notifiable asbestos work on (e.g. removal of asbestos).
  • Chapters 13 to 18 discuss specific aspects: demolition work (Chapter 13), the worker and the working environment (Chapter 14), waste management (Chapter 15), monitoring and measurements (Chapter 16), other persons with special functions, for example the client, architects and facility managers (Chapter 17), and asbestos in other situations, for example in vehicles and machinery (Chapter 18).
  • Chapter 19 describes the medical surveillance

Working with asbestos may involve working at high heights, at high temperatures, and with confining and cumbersome protective equipment. As this guide focuses on the prevention of health hazards due to asbestos, it should be noted that other risks (e.g. falls from heights, perhaps due to a friable asbestos cement roof) should not be ignored.

In terms of technical rules and practices to control and minimise risks from asbestos exposure, some clear differences in approach can be noted between Member States. In general, each approach has certain advantages and disadvantages. This guide provides explanations and clarifications of the different methods that could be considered as "best practices" for the particular approach and situation.

The following criteria were used to select methods to be included in the guide :

  • the method is reliable and has proven itself
  • the procedure takes into account features of different action instructions and should therefore theoretically be the best procedure
  • the procedure is the best procedure under the circumstances
  • Advances in the state of the art

In preparing the guide, care has been taken to make it as concise and readable as possible and to avoid repetition. Therefore, there are some cross-references between different sections, for example, to explain the considerations in the selection and use of protective clothing only once.

In a concise guide covering a wide range of practical work, there may occasionally be omissions of detail. Such omissions should therefore not be misunderstood as a deliberate exclusion of other measures.

Directive 2003/18/EC (Protection of workers from the risks related to exposure to asbestos at work), which complements Directive 83/477/EEC, has been implemented in Member States through national legislation, which may well vary in practical detail. This guidance is intentionally presented as non-mandatory so that it can offer the best practical advice without specifying whether the best practice is a mandatory requirement under national legislation in the EU Member States. Annex 1 provides a list of the relevant national legislation that has been communicated by each Member State.

As this guide focuses on avoiding hazards from exposure to asbestos, it does not attempt to cover the requirements of Directive 92/57/EEC on health and safety requirements for temporary or mobile construction sites. For example, in addition to sanitary facilities for the decontamination of persons, there must be adequate recreation rooms, as with all work on temporary or mobile construction sites. If a health and safety plan is required under the Health and Safety Directive for temporary or mobile construction sites, it should provide safe

include codes of practice for working with asbestos and documentation on the asbestos present at the site (e.g. abatement certificate). 

This guide contains guidance specifically aimed at the employer, the employee and the labour inspector. However, readers are likely to find the guidance aimed at others informative as well. A chapter has also been included specifically aimed at other groups of people involved in asbestos work, for example clients who contract for the removal of asbestos, or the people who occupy a building after asbestos has been removed, or health and safety advisers.

The guide aims to give practical advice on removing and reducing exposure to asbestos dust. The focus is on good and best practice for reducing exposure to asbestos.

2 ASBEST

Asbestos is the fibrous form of several naturally occurring minerals. The main forms are:

  • Chrysotile (white asbestos)
  • Crocidolite (blue asbestos)
  • Amosite (brown asbestos)
  • Actinolite
  • Anthophylite
  • Tremolit

The first three forms were the main forms of asbestos used in commerce. Although known by their colour, they cannot be reliably identified by their colour alone. Laboratory analysis is necessary for this.

Asbestos may be present in a number of products (see chapter 4). If the fibres can be released, there is danger from inhaling asbestos fibres in the air we breathe. The microscopic fibres can settle in the lungs, remain there for many years and cause disease many years, usually several decades later.

A weak bond of the asbestos fibres in the product or material due to the brittleness or condition of the product/material increases the risk of release of the fibres. However, if the fibres are firmly bound to a material that is not brittle, the release of the fibres is less likely. Procedural rules have been introduced in several EU Member States that give priority to the removal of asbestos-containing materials that are considered more hazardous.

All forms of asbestos have been classified as Class 1 carcinogens, meaning that they cause cancer in humans. The EU Directive 2003/18/EC (Protection of workers from the risks related to exposure to asbestos at work), which complements Directive 83/477/EEC, requires that the exposure of workers to for all types of asbestos 0.1 fibres/ml must not be exceeded. Exposure to all types of asbestos shall be reduced to a minimum and shall in any case be below the limit value.

Some Member States require that the type of asbestos be taken into account when deciding on the priority of a hazard. For example, epidemiological evidence indicates that for a given fibre concentration (measured by the standard method for workplaces), crocidolite is more hazardous than amosite, which in turn is more hazardous than chrysotile. However, this does not change the practical need to apply best practice to avoid exposure to asbestos.

This guide presents practical guidance on how to avoid or minimise exposure to asbestos.

Annual asbestos consumption in Europe has changed considerably during the 20th century, as shown in Fig. 2.1. The data (for consumption in over 27 European countries according to Virta (2003)) clearly show that consumption increased sharply from about 1950 to about 1980 and then decreased as some Member States introduced restrictions on the use of asbestos or banned its use completely. The bans introduced by the European Directives in the 1990s accelerated the move away from asbestos. A comprehensive ban on the use and marketing of products containing asbestos (following EU Directive 1999/77/EC) came into force on 1 January 2005. The ban on the extraction of asbestos and the ban on the manufacture and processing of products containing asbestos (following Directive 2003/18/EC) came into force in April 2006. Consequently, the asbestos problems that continue to exist in Europe can be traced back to the asbestos present in buildings, installations or equipment.

There were also important differences between EU Member States. Some countries reduced asbestos use from around 1980, while others continued to use it until the end of the century.


Fig. 2.1
Estimated total consumption of asbestos in Europe from 1920 to 2000 (Data source: Virta (2003)


Fig. 2.2 Scanning electron micrograph shows chrysotile fibres


Fig. 2.3 Scanning electron micrograph shows amosite fibres

3 HEALTH EFFECTS OF ASBESTOS

Asbestos is dangerous because the very fine fibres cannot be seen with the naked eye. Inhaling these fine asbestos fibres can lead to one of three diseases

  • Asbestosis, a scarring of the lung tissue
  • Lung cancer
  • Mesothelioma, a cancer of the pleura (pleura: the slippery, thin skin that covers the lungs) or peritoneum (peritoneum: the slippery skin that lines the abdomen).

Asbestosis impedes breathing and can contribute to death. Lung cancer leads to death in about 95% of all cases. Lung cancer can also follow asbestosis. Mesothelioma is not curable and usually leads to death within 12 to 18 months of diagnosis.

Exposure to asbestos has been suspected to cause laryngeal cancer or gastrointestinal cancer. Oral ingestion of asbestos fibres (e.g. in contaminated drinking water) has been suspected as a cause of gastrointestinal cancer, and at least one study has shown an increased risk due to unusually high concentrations of asbestos fibres ingested via drinking water. However, these suspicions have not been (consistently) supported by the results of relevant studies.

Exposure to asbestos fibres can also lead to pleural plaques. These are discrete, fibrous or partially calcified, thickened areas on the surface of the pleura that can be detected on an X-ray or CT scan. Deposits on the pleura are not malignant and do not usually lead to limited lung function.

There are thousands of deaths in Europe each year due to asbestos-related diseases. At a conference on asbestos in 2003 (held at the instigation of the EU's Senior Labour Inspectors Committee (SLIC)), the likely number of deaths per year in a total of seven European countries (UK, Belgium, Germany, Switzerland, Norway, Poland, Estonia) was estimated at around 15,000

http://www.hvbg.de/e/asbest/konfrep/konfrep/repbeitr/takala_en.pdf .

At this conference, the relationship between asbestos use in Germany and the delayed occurrence of newly compensated asbestos-related diseases was described by Woitowitz with the graph shown in Fig. 2.1. Delayed occurrence means that new asbestos-related disease cases will continue to occur due to asbestos exposure during peak periods of asbestos use. Although the production of asbestos-containing products and materials has been phased out in the EU, there is still a risk of exposure to asbestos from the materials and products that are still in buildings, plant and equipment.

Fig. 3.1 Annual asbestos consumption and annual incidence of the disease in Germany (Source: Woitowitz (2003)

http://www.hvbg.de/e/asbest/konfrep/konfrep/repbeitr/woitowitz_en.pdf

In the UK, there were around 1900 deaths due to mesothelioma in 2001, 2002 and 2003 and it is expected that the incidence of mesothelioma will peak between 2011 and 2015 at between 2000 and 2400 deaths per year.

http://www.hse.gov.uk/statistics/tables/meso01.htm

It is estimated that deaths from lung cancer due to asbestos exposure are about twice as high as deaths from mesothelioma. Thus, the total annual number of deaths from asbestos-related cancer in the UK alone is currently estimated at around 5500 to 6000.

In countries where awareness of asbestos hazards is not yet as high, cancer diagnoses and statistics (especially for mesothelioma, which is difficult to diagnose) may be less reliable.

These diseases usually develop over longer periods of time and usually occur at the earliest 10-60 years after the first exposure to asbestos. The average latency period from first exposure is about 35-40 years for mesothelioma. The average latency period for lung cancer has been estimated to be about 20-40 years. There is no direct experience of adverse effects from inhalation of asbestos fibres.

Asbestosis usually develops due to years of high exposure to asbestos, and the disease usually occurs more than a decade after the initial exposure. The cases of asbestosis that continue to be reported in Western Europe were almost certainly caused by high exposure decades ago.

The risk of developing asbestos-related lung cancer and mesothelioma increases with exposure. The risk of disease is lower if asbestos exposure is kept as low as possible. However, there is no known threshold below which there is absolutely no risk of developing these cancers. Therefore, the use Optimum process important to eliminate or minimise the risk of exposure.

The risk of developing mesothelioma is estimated to be greater for those exposed to asbestos fibres at a younger age than for those exposed later.

It is generally accepted that lung cancer is much more common in smokers than in non-smokers. The risk of developing lung cancer due to exposure to asbestos is also greater in smokers than in non-smokers.

 

If you employ people who may be exposed to asbestos in their work, you should:

  • Follow best practices (as outlined in this guide);
  • ensure that people have been adequately trained and informed about the risks
  • ensure that communication is effective (for example, not affected by communication difficulties);
  • ensure that people understand the importance of minimising exposure;
  • Provide information on the increased risks due to the combination of smoking and exposure to asbestos to encourage smokers to quit;
  • comply with legislation relating to work where exposure to asbestos is possible.

If you may be exposed to asbestos in your work, you should:

  • be aware of the risks due to exposure to asbestos;
  • understand that it is important to keep exposure as low as possible;
  • consider quitting smoking;
  • Follow best practice when working with asbestos, as described in this guide.

If you are a labour inspector, you should:

  • determine whether information (posters, brochures, etc.) on the health hazards associated with asbestos exposure is available;
  • Check whether workers have been adequately informed about the increased risk for smokers exposed to asbestos, e.g. by looking for brochures or posters and by asking people concerned;
  • Check whether the legal provisions on these matters have been complied with.

4 MATERIALS CONTAINING ASBESTOS

4.1 INTRODUCTION

Asbestos was widely used in many applications, for example for reinforcement or as a thermal, electrical or acoustic insulation material. It has been used in products subject to friction, in gaskets and adhesives. Its chemical resistance has led to its use in some processes, for example filtration or electrolytic processes. It has been used in commercial, industrial buildings as well as private homes, as illustrated in Figure 4.1. It is also found in the insulation material in railway carriages, ships and other vehicles, including aircraft and some military vehicles.

The extent to which a material releases asbestos fibres depends on whether the material is intact or damaged. The condition of asbestos-containing materials can change over time, for example due to damage, wear or ageing.

There are significant differences in the brittleness of different materials and the ease with which fibres can be released. Table 4.1 summarises examples of asbestos-containing materials and their typical use. The asbestos-containing materials are listed according to their potential for releasing asbestos fibres. Materials that are likely to release asbestos fibres readily are listed at the top of the list. There are some asbestos-containing materials (bituminous mixtures and rubber or plastic floor coverings) that are flammable. These flammable materials must not be not be disposed of by incineration because this would release asbestos fibres.

Table 4.1 Examples of materials containing asbestos with indication of the asbestos content

The extent to which the different types of asbestos-containing material have been used varies considerably between Member States. In some, asbestos was mainly used as asbestos cement. In other Member States (e.g. the UK), the use of structural coatings (a coating only a few millimetres thick containing about 5% of asbestos) was only popular at times.

Table 4.2 summarises examples of the use of some of these asbestos-containing materials in household appliances and industrial applications

Table 4.2       Examples of asbestos-containing materials and products used in household appliances and other applications

Products containing asbestos were manufactured by different manufacturers and offered under different trade names. In many cases, products that contained asbestos in the past were subsequently manufactured without asbestos. A comprehensive list of details of trade names, manufacturers and the periods when the manufactured product contained asbestos is available on the INRS website for products sold in France (INRS ED1475,

http://www.inrs.fr/inrs-pub/inrs01.nsf/B20B5BF9E88608EDC1256CD900519F98/$File/ed14 75.pdf ).

Fig. 4.1 The asbestos building shows typical places where asbestos-containing materials can be found.

4.2 WHAT YOU SHOULD DO

There is a possibility of exposure to asbestos when carrying out general maintenance or repair work in buildings. If you are involved in such work in these areas, the guidance provided here will be relevant to you:

If you employ or supervise people who may be exposed to asbestos-containing materials in the course of their work (see materials described above), you should:

  • provide adequate training so that these persons recognise materials that may contain asbestos and know what to do and when to do it if they come into contact with materials that may contain asbestos;
  • obtain good, reliable information on the presence or absence of asbestos-containing materials, for example from building plans and/or from architects, (in some Member States the responsible person must draw up a list of the asbestos-containing materials in a building);
  • ensure that records are kept of the materials that are proven to be free of asbestos (for example, by your organisation or the owner of the building);
  • provide written information on the presence of known asbestos-containing materials on site, including an asbestos inventory and, if appropriate, appropriate warning signs;
  • provide written instructions on procedures to be followed if asbestos-containing materials are unexpectedly encountered (according to the information given in chapters 9 and 10).

    If your work could release asbestos dust from a material listed above, you should:

    • have received information before starting work as to whether or not these building materials contain asbestos;
    • know how to recognise the products that might contain asbestos;
    • know what to do if you come across materials containing asbestos (see chapters 5 to 10).

      If you are a labour inspector, you should:

      • check that workers carrying out maintenance work have been adequately trained to recognise materials that may contain asbestos;
      • check whether sufficient information is available on materials that do or do not contain asbestos;
      • check whether organisational arrangements are in place to ensure laboratory analysis of material samples that may contain asbestos;
      • check whether there is a responsible person who can order the immediate interruption of work if materials are found that could contain asbestos;
      • check whether the relevant national legislation has been complied with.

        Fig. 4.2 Enclosure with asbestos insulation board (partially removed to show the asbestos cement flue pipe behind).

        Fig. 4.3 Asbestos insulation board as partition wall. This example shows the practical problems of constructing a suitable seal and the areas where asbestos dust could accumulate during removal.


        Fig. 4.4 Hole in the wall reveals asbestos pipe insulation


        Fig. 4.5 An asbestos cement flue pipe sealed with asbestos cord is passed through a filler element made of asbestos


        Fig. 4.6 Floor tiles containing asbestos


        Fig. 4.7 Roofing felt containing asbestos


        Fig. 4.8 Asbestos insulation on steam pipes


        Fig. 4.9 Insulated cables with a layer of asbestos in the insulation


        Fig. 4.10 Asbestos cement cladding at a factory


        Fig. 4.11 Asbestos insulation on steel beams


        Fig. 4.12 Sealing a chimney door with asbestos cord. On the right, a close-up of the asbestos cord.

        5 RISK ASSESSMENT AND WORK PLAN BEFORE CARRYING OUT WORK

        5.1 INTRODUCTION

        When preparing a risk assessment and a work plan, the written documentation of the assessment and the information used for it is state of good practice.

        In order to obtain information about where asbestos is located, an investigation by competent professionals may be required. The procedures for carrying out such investigations are not covered in this guide, but it is important that the responsible person (employer, manager, worker) knows that they are required. The information should be provided in a form that is easy to understand.

        Where this information is available, it is important that any limitations indicated in the information are observed. For example, it is possible that not all cavities in the walls were tested during an investigation.

        In some Member States, there may be a principle that asbestos (especially weakly bonded asbestos) should be removed whenever possible. In that case, a finding that asbestos is present may result in the need to comply with legislation requiring safe removal.

        In other Member States, the decision on what to do with the asbestos-containing material is based on an examination of the factors relating to the risk of release of asbestos fibres from the material. This decision-making process is described in Section 6.2. Subject to this decision, asbestos-containing materials can remain where they are and be treated as a hazard that is safe as long as the materials are well maintained, well sealed, recorded in writing (e.g. on the building plans) and appropriately labelled.

        Asbestos that is not removed must be inspected regularly to ensure that the material remains in good condition. In addition, it shall be clarified that the organisation and control of nearby works are effective. If the asbestos is not in good condition or cannot be maintained in a safe condition, removal shall be organised.

        When a decision has been made that work is to be carried out where asbestos-containing materials are encountered or asbestos dust is released, a written assessment of the hazard and the consequential risks must be prepared. The risk assessment should be site-specific, i.e. include the specifics of the site, and should include an assessment of the potential exposures and a summary of the available experience in controlling exposure to asbestos in similar circumstances. The risk assessment should consider the risks of asbestos exposure to workers as well as to other involved persons in the vicinity (e.g. residents). This may be based on measurements of similar or previous work. Typical exposure concentrations as measured by the UK Health and Safety Executive in work involving asbestos cladding, coating and asbestos insulation board are given in Annex 1.

        Written instructions (sometimes called a "written work plan") shall be prepared for each work task.

        The conditions under which work with asbestos is carried out create certain practical difficulties in relation to emergencies, such as sudden incapacitating illness or injury. Access may be restricted (especially if the work is carried out in an enclosure, see Chapter 12) and the wearing of respiratory equipment impedes communication. Emergency procedures must cover accidents and illnesses within an enclosure. This requires the following information:

        • Number and names of first aiders
        • Identification of first responders (when all persons are wearing protective clothing and full respiratory equipment covering the face).
        • Organisation of communication between people inside and people outside the enclosure (especially in emergencies).
        • Quick access points in emergencies to an enclosure, and when and how to use them.
        • Rules of procedure for the access of rescue personnel
        • Location of emergency exits and emergency equipment
        • Detailed decontamination procedures to be followed after a hasty emergency access (e.g. access to help an injured, immobilised worker in the enclosure).

        The emergency procedures should also specify what measures are to be taken in the event of an emergency evacuation of the building or site (e.g. following a fire or bomb alarm) of workers in personal protective equipment that may be contaminated with asbestos.

        The written risk assessments and instructions (work plan) should be freely available at the construction site. They should take into account foreseeable emergencies and indicate procedural rules to be followed and the persons responsible in such an event.

        5.2 WHAT YOU MUST DO

        If you employ or supervise people who are likely to release asbestos dust in the course of their work, you must:

        • have prepared a written risk assessment and a written work plan for each task;
        • ensure that the risk assessment takes into account the characteristics of the particular worksite and the activities and includes a sufficient basis for estimating the potential exposure;
        • ensure that the risk assessment takes into account the exposure of all persons concerned (for example, machine operators, residents, contractor employees, etc.);
        • ensure that the plan is detailed and relates to the particular site and the work carried out there;
        • Include preparatory work in the plan (e.g. erecting an enclosure);
        • include a clear diagram of the site in the plan showing the location of the equipment (e.g. enclosure, airlocks, decontamination unit, negative pressure units, waste material passageway, secure contaminant container);
        • consult workers who have practical knowledge to ensure that the risk assessment and work plan are realistic;
        • ensure that copies of the risk assessment and the work plan are available on site and are available to those involved in carrying out the work;
        • ensure that the risk assessment and the work plan are explained to the workforce and to the persons affected by the work;
        • ensure that copies of the risk assessment and the work plan have been sent to the supervisory authorities if required by national legislation;
        • Include rules of procedure for behaviour in emergency situations (including those in section 5.1 situations described).

        If you are about to carry out work that may release asbestos dust, you should:

        • be consulted in the risk assessment and in the work plan;
        • Offer your suggestions on practical problems concerning the work plan and risk assessment;
        • have a copy of the risk assessment and the work plan;ensure that you have the work plan
        • Ensure that you follow the work plan

        If you are a labour inspector, you should check whether:

        • an adequate and appropriate risk assessment is available at the construction site with regard to the exposure of workers as well as other persons;
        • written instructions (work plan) with specific site details are available at the construction site;
        • there is an emergency plan (e.g. as part of the work plan);
        • workers have an adequate understanding of the risk assessment and the work plan;
        • the risk assessment and work plan show that workers' comments have been taken into account.

        5.3 TEMPLATE FOR A WORK PLAN CHECKLIST

        The national regulatory body may provide guidance on the design of work plans (e.g. the "Method statement aide memoire" http://www.hse.gov.uk/aboutus/meetings/alg/policy/02-03.pdf ). A work plan may contain cross-references to general information on working methods to be included. The work plan should always be comprehensive and describe all site and task specific features (e.g. plan of the construction site as well as any deviations from the generally accepted methods).

        The following checklist for a work plan is based on guidance in INRS, 1998 ED 815, Appendix 6 and the "Method statement aide memoire"of the UK Health and Safety Executive.

        This example is a non-exhaustive list of items that the work plan should include or consider. It should also include the items for reportable work (see Chapter 12). For low-risk work (see chapter 11), the work plan can be less comprehensive, but should include the sections or items marked with an asterisk (*).

        *Front page

        Under the logo of the organisation carrying out the work:

        • Release date
        • General title of the project (removal of asbestos, encapsulation )
        • Type of material containing asbestos
        • national licences or permits to carry out the work (if required by national legislation), date and duration of the work
        • Name of the person responsible for the work and the name of the client
        • exact address of the construction site
        • Name of doctor (in EU Member States where a doctor is involved in occupational health and safety)
        • Planned date of arrival of the executing company at the construction site

        Administrative information

        • Contractor or organisation carrying out the work on the asbestos-containing materials (name of director, representative on site; with addresses, telephone and fax numbers).
        • Persons responsible for the work (telephone and fax numbers)
        • Name of the appointed consultant present on the construction site
        • the laboratory commissioned to carry out the measurements on the construction site (address, telephone and fax number)
        • Subcontractors, in particular for preparatory work
        • List of officially participating organisations

        * Information about the construction site

        • * Location (e.g. shop in a shopping centre)
        • * Type of work
          • Planned treatment, removal and/or encapsulation
          • Asbestos type (crocidolite, chrysotile )
          • Type and condition of the asbestos-containing materials, quantity and distribution on the construction site
        • * Work programme, including date and time of the work
        • Staff
        • daily routine programme
        • Designated areas
        • Markings (type of signs, number, locations)
        • Pathway for pollutant disposal
        • Location of the decontamination unit
        • Sanitary facilities and recreation rooms
        • factors specific to the location (proximity to other activities, work in high temperatures, air conditioning or heating systems, work at height ).

        Factors affecting the plan for removal or encapsulation

        • Analysis of the risks from asbestos and other factors related either to the workplace (e.g. electricity, gas, steam, fire, machinery, working at height) or to the materials and equipment used.
        • Measurement of fibre concentrations (or asbestos fibre concentrations) before the procedure
        • the likely exposure to asbestos during removal or encapsulation

        Setting up the work (enclosure etc.) on the construction site

        • Facilities for staff (drinks, sanitary facilities)
        • Separation and marking of the area
        • Effects on other activities in the building or the surrounding area

        Preparatory work

        • Removal of equipment and materials
        • Establishment of a supply network and drainage (electricity, water, ventilation)
        • Adaptation of building installations in the working area (fire alarm, electricity, gas, central heating, air conditioning, etc.)
        • Materials and equipment required for the work

        Preparation of the area where asbestos work will take place

        • Separation and enclosure (see chapter 12)
        • Generation of negative pressure
        • Pre-cleaning of the work area and the installation objects, removal or covering of installation objects.
        • Enclosure of the area (safe working methods, materials and emergency exits)
        • Negative pressure and air extraction
        • Smoke tests, process and criteria for acceptance

        Removal or encapsulation of asbestos

        • Methods (injection, spraying, manual scraping etc.), equipment (injection equipment, spraying equipment) and materials (wetting agents, cleaning agents )
        • Protection of workers (respirator)
        • Quality control procedures (working methods and effectiveness of treatment)

        Control programmes (monitoring and measurements)

        • Sampling plan for the period of the work (see chapter 16)
        • Systems for monitoring and controlling the effectiveness of the enclosure
        • Plan of the locations where sampling is foreseen

        Removal of waste materials

        • Condition of waste materials (asbestos as well as non-asbestos containing material), handling procedures
        • Waste disposal, safe storage on site and procedures for disposal to approved landfill sites.

        Cleaning the work area

        • Procedure for removing the surface material and cleaning the surfaces
        • Methods for decontamination of materials and equipment used in the work
        • Visual inspection and cleanliness check. System for maintaining negative pressure. Appointed person is responsible for the control systems.

        After completion of the remediation work, the restoration of the area for normal use

        • Sampling to test the indoor air for asbestos dust, sampling plan, laboratory takes over the work
        • Finally, removal of the equipment from the area

        Description and characteristics of the materials and equipment used in the course of the work

        • Equipment for personnel (including type of breathing apparatus)
        • Decontamination unit (and documentation of test methods confirming that it is not contaminated due to previous operations).
        • Enclosure and associated equipment
          • Size of the enclosure
          • Negative pressure units (number and capacity, air exchange rate)
          • Air lock, bag lock
          • Water heater, water filter
          • Lighting
          • Injection equipment and other dust-binding equipment
          • Emergency equipment
        • Consumables (filters, ).

        Emergency measures

        • First aiders, emergency measures for situations with varying degrees of urgency and danger
        • Procedures established for assistance in emergencies
        • Communication (to call for help from inside the enclosure)
        • Coordination with external emergency services

        Plans and diagrams of the construction site

        • Location of the construction site/enclosure in relation to other activities and enterprises
        • The enclosure, its size and shape and the location of:
          • Viewing panels and monitoring television (if required)
          • Negative pressure units and associated air exchange points
          • Industrial hoover of the class (for asbestos)
          • Bag lock, waste passageway, safe waste storage (e.g. tipper)
        • Location of the decontamination unit, passageways (if there is no direct connection between the decontamination unit and the enclosure) and airlock access to the enclosure.
        • Arrangement of networks and facilities involved in the work (e.g. air intake points, water and power supply for the decontamination unit).
        • Positioning of the connection points, if A network of compressed air supply connection points is used to supply the respiratory protective devices.

        6 DECISION-MAKING PROCESS

        6.1 NECESSARY DECISIONS

        This chapter describes the logical decision-making process when it comes to:

        • Determine whether it is better to leave the asbestos-containing materials in place (while adequately securing them and adequately controlling and managing them) or to remove the asbestos.
        • to decide whether certain maintenance work can be carried out in such a way that there is only a low risk of exposure to asbestos and can be classified as work with "occasional exposure of low level" which can be carried out without prior notification to the competent authority.

        6.2 GUIDANCE ON DECISIONS ON ASBESTOS-CONTAINING MATERIALS IN BUILDINGS

        A number of key decisions need to be made before carrying out work where asbestos-containing materials may be involved. These decisions are closely linked to the hazard assessment and planning process (chapter 5). The risk assessments will determine which decisions are appropriate; these decisions will affect the purpose and content of the plans to be developed.

        Several factors need to be taken into account when deciding on the work that may be required. In some Member States of the European Union, there is national legislation which in principle requires the removal of asbestos-containing materials (particularly materials containing weakly bound fibres) where it is practicable to do so. Other Member States make the decision as to whether to remove asbestos-containing materials on the spot The decision as to whether or not materials can be left in place depends on certain criteria, such as condition, location, access and thus the overall likelihood of the material potentially posing a risk from the release of asbestos fines. National legislation must therefore be taken into account when deciding whether materials should be secured (e.g. by encapsulation and/or containment) and can be left in place.

        Subject to national legislation, materials containing asbestos which are in a safe condition (i.e. undamaged, enclosed or encapsulated) may be left in situ provided that effective monitoring and management of the secured material is ensured. If material containing asbestos is left in place, it must be identified in the building's documentation and plans so that its presence is taken into account in future works. In addition, a system should be in place to monitor the asbestos-containing material and manage its condition (e.g. keep material in good condition).

        Fig. 6.1 and 6.2 show logical decision trees. The starting point is to identify whether a material is asbestos or not. This is followed by a system to arrive at the decision whether the material should be removed or not. Once it is known that the material contains asbestos, a series of questions follows as to whether the asbestos-containing material.

        • is in good condition; or
        • can only be repaired with difficulty
        • accessible (in which case it may be damaged accidentally or intentionally; if it is not accessible, removal may be hindered and limited).
        • is damaged, with more than minor and superficial damage (so that repair would be unreliable)
        • is extensively damaged (i.e. widespread damage so that encapsulation of the damaged parts is no longer feasible)
        • cannot be encapsulated or enclosed (for reasons other than those mentioned)

        If the asbestos-containing material is not in good condition, cannot be easily repaired, is easily accessible (and therefore potentially subject to further damage or disturbance), is extensively damaged, and if there is no practical way to encapsulate or contain the material, then the material must be removed. This decision applies to any type of asbestos-containing material.

        The alternative to removing the asbestos-containing materials is to make the materials safe (by keeping them in good condition or enclosing them) and to monitor and manage them on site.

        Even if asbestos-containing material can be made safe and monitored and managed in place, it is necessary to consider the possible requirements of usual renovation work in the building. If the materials interfere with the usual renovation work in the building, removing the asbestos-containing material would be the right decision.

        For asbestos cement and other materials with tightly bound fibres, the decision-making process would likely result in a decision to leave the material in place, document, monitor and manage it.

        Fig. 6.1 Decision tree for materials suspected of containing asbestos

         

        6.3 DECISIONS REGARDING THE NOTIFIABILITY OF WORK

        The risk assessment is the basis for deciding whether work should be treated as notifiable asbestos work.

        Directive 2003/18/EC (Protection of workers from the risks related to exposure to asbestos at work), which supplements Directive 83/477/EEC, applies to all workers who may be exposed to dust from materials containing asbestos.

        The European Directive 2003/18/EC requires that the work must be reported (to the supervisory authority in the respective EU member state) and that health surveillance of workers must be carried out and documented in writing. In addition, it requires that employers report on workers "keep a register indicating the nature and duration of their activities and the hazards to which they have been exposed." In certain clearly defined cases, these provisions need not be applied. "Provided that the exposures are occasional and of low level and that it is clear from the results of the risk assessment that the exposure limit value for asbestos in the air in the working area is not exceeded, it is not necessary to [above regulations] not to be applied to the following operations:

        • Short, non-consecutive maintenance work, working only on non-friable materials.
        • Removal of intact materials in which the asbestos fibres are firmly bound in a matrix, whereby these materials are not damaged
        • Encapsulation and wrapping of asbestos-containing materials in good condition
        • Air monitoring and control and sampling to determine the presence of asbestos in a particular "

        A process for deciding whether works meet the criteria for non-application of the legislation is illustrated in Fig. 6.3.

        The Directive (2003/18/EC) defines the exposure limit for asbestos as 0.1 fibres/cm3(weighted average over 8 hours). Some Member States of the European Union determine the time average over shorter periods (4 hours or 1 hour).

        The national regulations of the Member States may differ as to whether and to what extent use is made of the possibility of waiving these provisions.

        Therefore, all work with friable materials (e.g. sprayed coverings, cladding, loose tamping material) must be treated as notifiable and also require medical supervision. In the case of other materials, the condition must be assessed and a risk assessment carried out in order to obtain the necessary information for a decision on a possible exemption in relation to the reporting obligation.

        For work involving the handling of materials with firmly bound fibres, e.g. asbestos cement, the risk assessment must take into account the nature and duration of the work. Annex 1 gives examples of air concentrations that have been reported as typical for various activities involving asbestos cement.

        If you employ or supervise people who are likely to be exposed to asbestos dust in the course of their work, you should:

        • carry out the risk assessment for the respective work;
        • use the decision-making process to determine the appropriate course of action (i.e. decide whether the material can be removed or secured and left in place and managed, and whether the work is reportable);
        • prepare and maintain written records of the type of material (e.g. sprayed coating or insulation board or asbestos cement) and its condition (e.g. comment on the type and position of damage, using photographs if possible);
        • prepare documentation on the documents used in the risk assessment to estimate the possible air concentration;
        • Record the decision-making process (e.g. the answers to the questions in the relevant logical decision trees);
        • plan the work as well as organise indoor air measurements, unless there is clear evidence of the air concentrations that are likely to be expected

        If asbestos-containing material is likely to be damaged during your work, you should:

        • be involved in the risk assessment that contributes to the above decision-making process.

        If you are a supervisor and inspect a construction site where there are materials containing asbestos, you should:

        • examine the evidence that the decision not to remove the material was justified;
        • check whether the condition of the materials that led to an assessment of the work as non-notifiable in the risk assessment does in fact meet the criteria described in section 6.3 (e.g. not brittle, not degraded, in good condition);
        • check that monitoring and management of materials left on site are ensured;
        • consider whether the information is adequate for estimating likely exposures, especially if the risk assessment indicated a low level exposure.

        Fig. 6.3 Decision tree to decide whether the work is notifiable


        Fig. 6.4 Insulating panel containing asbestos. Removal of the panel should be considered as the panel could easily be damaged at this point.

        7 INSTRUCTION AND INFORMATION

        7.1 INTRODUCTION

        This chapter outlines the topics to be covered in a training programme and refers to other publications that give further details. In particular, the report by Bard et al (2001), which sets out detailed recommendations on the structure and content of an asbestos training programme, provides detailed information to training providers. The European Directive (2003/18/EC) states: "Employers shall provide adequate training for all workers who are or may be exposed to dust containing asbestos. This training shall be provided at regular intervals and shall be free of charge for workers. 2. The content of the training shall be easily understood by workers. The training must provide workers with the knowledge and competence necessary for prevention and safety ..."

        The recommendations of a SLIC working group are described in: http://www.ilo.org/public/english/protection/safework/labinsp/asbestos_conf/inforen.pdf. Training recommendations from the UK are described at: http://www.hse.gov.uk/aboutus/meetings/alg/licence/04-04.pdf.

        The training should be presented in a way that is easily understood by the participants (employer, supervisor or worker) and include practical exercises on the use of all equipment. It must be given in the language that workers (especially workers of other nationalities) know and understand.

        This chapter also includes a brief guide to the required training programme (initial training, refresher courses, regular review of training needs, etc.). Finally, some suggestions are given for supporting information material to consolidate the training success.

        This chapter aims to make it clear to the employer what training he must organise for workers, supervisors and himself. The worker should know what training he is entitled to. This information also serves to provide the labour inspector with a clearly described framework for checking the adequacy and effectiveness of the training.

        7.2 CONTENT OF THE TRAINING

        7.2.1 Essential training content for all work involving asbestos

        Training for all persons (employer, supervisor, worker) involved in work where they may (eventually) be exposed to asbestos-containing material should include the following topics:

        • Properties of asbestos and its health effects, including the synergistic effect of smoking
        • different types of materials and products that may contain asbestos and where they are likely to be found
        • Importance of the condition of the material/products for the possibility of asbestos fibres being released
        • necessary measures when encountering materials that may contain asbestos.

         

        7.2.2      Essential training content for general construction work

        Workers, employers and supervisory staff who may be exposed to asbestos in the workplace shall receive appropriate training. This training shall cover the following in addition to the content listed in section 7.2.1:

        • The type and extent of information that should be available where asbestos-containing materials are located (e.g. some EU Member States require inventories on the occurrence and location of asbestos-containing materials in buildings).
        • The obligation to stop work immediately if materials are found that are suspected to contain asbestos and to inform the responsible supervisor.
        • measures required to reduce potential exposure should the suspected asbestos-containing material be in poor condition or accidentally damaged (e.g. clearing the immediate area, necessary safety measures and informing the responsible supervisor
        • for the supervisor and the employer as addressees: laboratory analytical sample testing to confirm the presence or absence of asbestos.

        The training should also address emergency situations where the suspicion of asbestos in a material arises after it has been damaged. In this case, the training should provide procedures to ensure that the situation is not made worse by inappropriate actions (e.g. trying to sweep up the material) or by inaction that will perpetuate exposure to asbestos.

         

        7.2.3 Essential training content for low-risk asbestos work

        If the training is intended for workers performing low-risk work, i.e. work that meets the criteria set out in section 6.3, it shall cover the content specified in section 7.2.1 and beyond:

        • Activities that could lead to exposure to asbestos
        • Importance of effective control measures to prevent or minimise exposure to asbestos dust and to prevent the spread of asbestos contamination
        • safe work practices that minimise exposure, including control techniques, personal protective equipment, risk assessments and written instructions (work plan)
        • Importance of respiratory protective equipment, selection of the appropriate respirator and its proper use
        • appropriate care and maintenance of personal protective equipment and respiratory protective equipment
        • Procedure for the decontamination of persons
        • Procedures for the following emergency situations, B.: accidental damage to asbestos-containing materials or injury or illness to persons during the performance of asbestos work.
        • Waste disposal, appropriate encapsulation (e.g. bagging or wrapping) of the waste material to prevent the spread of contamination, labelling and provision of a secure tipper or container at the point of transport by a licensed asbestos waste disposal contractor to an approved (or licensed) landfill.

        For workers and supervisors, training shall include practical exercises to familiarise them with material samples and to practice the proper use and maintenance of equipment and appropriate working techniques.

        Training of supervisors and employers should also include legal responsibilities and supervision of work.

         

        7.2.4     Essential training content for work involving the removal of asbestos

        If the training is for workers carrying out reportable work (i.e. the hazard assessed does not meet the criteria for low risk and limited scope work set out in section 6.3), then more comprehensive training is required. It should cover the topics listed in section 7.2.3, but in addition cover the nature of the work and topics relevant to reportable work.

        The training of workers who remove asbestos must include practical exercises so that they learn how to use and maintain equipment related to safety (enclosures, personal protective equipment, respiratory protective equipment, decontamination units, dust suppression equipment and equipment for the controlled removal of asbestos-containing materials).

        The topics listed in sections 7.2.1 and 7.2.3 shall be expanded to include the following:

          • When discussing the health effects of asbestos, the relationship between exposure and risk of disease should be emphasised to highlight the importance of preventing or minimising exposure to asbestos.
          • When discussing the products that may contain asbestos, detail the characteristics of the products that may need to be considered during removal
          • The following should also be addressed when discussing safe work practices:
            1. Good work planning, including good site design (positioning of equipment, e.g. airlocks; decontamination unit; shortest, safest route to move waste to a safe tipper).
            2. Suitable and sufficient risk assessment covering all aspects of the work and a detailed work plan
            3. Preparation of the construction site before erecting an enclosure/partition, including any prior clean-up that may be required.
            4. Procedure of erecting a bulkhead, additional protection of the floor and all weak points. Ensure that all parts of the bulkhead can be adequately cleaned, i.e. there should be no places where dust/dirt can settle. Waste locks, air locks, vision panels (and monitoring TV if necessary), negative pressure units, including easily changed pre-filters, cables to supply power from outside the enclosure so that fuses etc. can be changed.
            5. Maintenance of an enclosure (effectiveness of ventilation - negative pressure unit, integrity of enclosure, periodic inspections, etc.), including importance of smoke tests before starting work.
            6. Techniques for removing asbestos with minimal dust release, including dust suppression methods such as 'wet stripping' , prompt bagging of material to prevent the spread of dust (on feet, equipment or clothing) and, for supervising personnel, monitoring the effectiveness of the
            7. Cleaning of the enclosure, airlocks and sanitary facilities; comprehensive cleaning (from top to bottom).
            8. Effective communication (also between the persons inside the enclosure and the persons outside the enclosure)
            9. Cleaning again if an enclosure is not released
            10. Process for cleaning and dismantling the
        • When discussing respiratory protective equipment, the following should also be addressed:
          1. Positive pressure ventilation and/or compressed air bonnet
          2. Cleaning/maintenance of breathing apparatus
          3. The importance of checking the fit of equipment, and factors that influence this; inspection, testing, cleaning and maintenance of respiratory equipment
          4. Different types of breathing apparatus, their advantages and limitations
          5. Emergency measures in case the supply (power or compressed air) fails in a work situation
          6. Possible limitations (e.g. in visibility) and difficulties in using respiratory equipment.
        • The emergency procedures training would cover procedures for the following situations:
          1. Assistance measures for people who are injured or become ill in an asbestos enclosure
          2. Evacuation in emergencies (e.g. fire)
          3. Power or equipment failure (negative pressure, breathing apparatus)
          4. Leak outside the enclosure
          5. Interruption of the water supply to the sanitary unit
        • Training for procedures for decontamination of persons would include the following:
          1. The use of airlocks, entry/exit to the enclosure and decontamination unit, which may be either directly connected to the enclosure or separate from it.
          2. Change of personal protective equipment, showers, disposal of overalls
          3. Maintenance of a decontamination unit
          4. Decontamination of persons in the event of an accident or evacuation
        • Correct use and maintenance of equipment used in the removal of asbestos
        • Other potential hazards, e.g. removing asbestos at high temperatures, working at great heights, setting up and using access equipment for higher workplaces
        • Waste disposal:
          1. Method for bagging and wrapping waste
          2. Secure containment (e.g. wrapping and/or bagging)
          3. Labelling
          4. Safe passage through bag lock and defined path from enclosure to safe storage location
          5. Transport of waste from the remediation site to an approved landfill by an approved asbestos waste disposal company.
          6. Proof of traceability of the waste from the construction site to the landfill (e.g. consignment note).

        For workers who are required by the Directive to undergo medical examinations, the training should include the following:

        • Health control requirements, including their purpose and importance (as described in chapter 19) and the need to have documents to prove that it has indeed taken place
        • The information and advice that may be given to workers after a medical examination.

         

        For supervisors and employers, training should also include the following:

        • good planning
        • Inspection and testing of equipment (e.g. decontamination unit, enclosure, dust suppression equipment ); how to detect defects.
        • Inspection of the work during its execution
        • Checking the effectiveness of fibre concentration monitoring
        • Review of competence and training needs
        • Record keeping
        • Need to intensively train new workers

        In addition to practical supervision, the training of supervisors and employers must take into account the principles outlined in chapter 5 and 6 topics covered, i.e.

        • Drawing up a risk assessment (with regard to the exposure of workers and other persons) and a work plan
        • Relevant laws and regulations
        • their functions and responsibilities

        For all persons involved in the removal of asbestos, the training should create an understanding of the air sampling and clearance tests that are carried out during and after the completion of the work (see chapter 16).


        Fig. 7.1 Practical exercise in using an H-type hoover to remove simulated contaminated material (talcum powder). This illustration was provided by the UK HSE.

        7.3 TRAINING PROGRAMME - YOUR TASK

        If you employ or supervise people who may be exposed to asbestos in the course of their work, you should:

        • Provide appropriate induction training, as outlined above, before these people take on the work;
        • assess whether a refresher course is needed - it should be conducted at least once a year and when there are changes in procedures or the nature of the work - and keep appropriate records;
        • regularly conduct task-specific briefings (so-called toolbox talks), especially if a particular task involves something unusual;
        • Organise training by a competent provider (e.g. organisation or person with knowledge of proper procedures and good working practices and with skills in delivering training content);
        • ensure that each course participant is instructed in a language they understand;
        • Keep records of the successfully completed training course, which must be accessible to every person in the workplace;
        • Proper supervision in the workplace with special attention to newly qualified workers

        If your work involves a risk of exposure to asbestos, you should:

        • receive adequate training before taking over the work;

        • have the need for refresher courses assessed regularly (at least once a year) and whenever there is a significant change in the nature of the work;

        • Inform your employer if there are any language issues that might affect your understanding of the training (for example, does your employer know what your mother tongue is?).

        If you are a labour inspector, you should:

        • check that there is documentation of successfully completed training courses for each worker on the site;
        • check whether there are records of periodic assessments of the need for refresher courses for individual workers;
        • check that training of workers of foreign nationality has been provided in a language/languages they understand;
        • check that the training has been provided by a competent training company or trainer.

        7.4 INFORMATION

        For all activities where workers are or may be exposed to dust from asbestos-containing materials, Directive 2003/18/EC (protection of workers from the risks related to exposure to asbestos at work), which complements Directive 83/477/EEC, requires that workers and their representatives receive adequate information on:

        • the health risks due to exposure to asbestos dust or materials containing asbestos
        • the legally binding limit values and the requirement to monitor the release of asbestos dust
        • Hygiene requirements, including the need to refrain from smoking
        • the precautions to be taken with regard to the wearing and use of protective equipment and clothing
        • special precautions designed to minimise exposure to asbestos.

        These points are included in the training programme recommended above. In addition, information on these issues should also be readily available in the workplace in an appropriate form (e.g. posters, notices or brochures).

        8 EQUIPMENT

        8.1 EQUIPMENT

        Suitable equipment must be available for the work. Basic equipment for most tasks is listed in this section. The equipment must be kept in good condition and therefore as described in section 8.2 described above.

        8.1.1 For low-risk work (not reportable)

        For low hazard work with asbestos (which is not reportable), the required equipment includes the following:

        • Materials for isolating and separating the work area (tapes, barriers, markings, warning signs)
        • Materials to prevent the spread of contamination (durable 125 and 250 µm thick polyethylene film [also known as 500 and 1000 thickness polyethylene film], wood, plastic or metal materials).
        • Smoke test tubes for checking the integrity of small enclosures
        • Personal protective equipment (e.g. disposable overalls; washable boots) and respiratory protective equipment (e.g. disposable respirators suitable for asbestos EN 149 type FFP3 or EN405 half masks - with face fit test to determine suitability for individual workers and regular replacement of dirty filters).
        • H-type hoover, i.e. a hoover with HEPA (High Efficiency Particulate Air) filters manufactured in accordance with the international specifications for use with asbestos.
        • Dust suppression equipment, e.g. local exhaust with connection to H-type hoover for collecting dust from boreholes, etc.
        • suitable asbestos waste containers (e.g. properly labelled plastic bags)
        • Cleaning equipment and consumables (damp wipes, dust absorbing cloths, fine airless water spray).
        • Safe storage of the waste
        • Hygiene facilities for personal decontamination (washing facilities, preferably a shower), with storage facilities for work clothing and protective clothing separate from normal street clothing (see section 8.1.2 for personal decontamination facilities required for reportable work with asbestos).
        • Consumables for personal decontamination (shower gel, nail brushes, towels)
        • Equipment for water filtration

         

        8.1.2 Additional equipment for reportable work

        For notifiable work with asbestos, you also need the following:

        • Full enclosure (durable polythene sheeting, frame and vacuum unit with pressure monitoring equipment; one EU Member State requires pressure monitoring equipment that continuously records readings).
        • the enclosure should have clean viewing windows or television surveillance to allow the work and workers to be inspected without having to enter the enclosure
        • Good lighting (mobile, cleanable lamps suitable for use in the enclosure).
        • Smoke generator for checking the integrity of large enclosures
        • High performance full facepiece respirators (with personnel who have conducted face fit tests for this type of respiratory equipment); or air-supplied respirator.
        • personal protective equipment (disposable overalls and washable boots)
        • fully cleanable decontamination unit, with adjustable heated shower and separate areas for clean clothing and for discarded and contaminated disposable workwear. There must be a certificate confirming that the decontamination unit has been tested and found not to be contaminated prior to its arrival on site. There must be at least one shower (decontamination unit) for every four workers engaged in the asbestos work.
          1. Filtration of the waste water prevents the spread of asbestos
          2. the best practice (used in some EU Member States) is to use a five-chamber unit with two shower rooms (see section 12.4 for a diagram showing the layout and proper use of decontamination equipment). This five-chamber system is used where workers wear waterproof sealed coveralls that are cleaned under a shower. After removing the showered washable coveralls, which can be stored in the middle chamber, the worker uses the next shower chamber. A widely used and accepted alternative is a three-stage unit consisting of a shower between a 'clean end' and a 'dirty end'; this system is suitable for workers wearing disposable coveralls.
          3. A high-efficiency-particulate-air (HEPA) filter exhaust provides airflow (through grilles) from the 'clean end' to the 'dirty end' of the decontamination unit. Self-closing doors provide separation of the sections. In cold seasons, the clean end should be heated to provide a comfortable warm environment for changing and showering.
        • A negative pressure unit (exhaust fan with HEPA filter) to maintain ventilation inside the enclosures, with control unit to monitor pressure. The best practice (defined in an EU Member State) is to use continuously recording control devices (e.g. making a paper record of the pressure difference). One Member State requires that the negative pressure unit conforms to a national quality standard (British Standards Institution; PAS 60 Part 2).
        • For notifiable work (chapter 12), in particular for the removal of materials containing only weakly bonded asbestos, an emergency generator is installed in a Member State of the European Union to supply the

        key electrical equipment (negative pressure ventilation, lighting etc. in the enclosure) and sufficient storage tanks for water to ensure water supply for personal decontamination recommended. (The equipment may only be operated by appropriately trained and competent persons).

        • Dust suppression equipment, for injecting water into asbestos-containing insulation prior to removal and for spraying surfaces of asbestos-containing materials.
        • safe storage of the asbestos waste

        This list is not exhaustive, but shows how much equipment is needed to be protected from the risk of asbestos exposure. Other equipment (such as fire extinguishers and first aid equipment) is also required.

         

        8.1.3  Selection of respiratory protection equipment

        The European Directive 2003/18/EC states that in the case of activities (such as repair, maintenance, removal and demolition work) which may give rise to asbestos concentrations in excess of the permissible exposure limit value (for the value see section 6.3), the employer must establish further measures to protect workers, in particular that "the workers shall obtain appropriate respiratory and other personal protective equipment to be worn". Therefore, based on the risk assessment (chapter 5) suitable respiratory protective equipment is selected. A guide to the selection, use and care of respiratory protective equipment can be found in EN 529.

        The selection should be based on the following principles:

        • the concentration inside the facepiece must be kept as low as possible, it must in no case exceed the exposure limit
        • the equipment must be suitable for the worker and the conditions in which he/she works
        • the nature of the work, B. the range of movement required, and any obstacles or restrictions
          1. the conditions at the construction site, e.g. possibility of access and free movement in the work area
          2. the individual conditions of the head of the face
          3. his/her medical fitness
          4. the period in which the wearer must use the equipment
          5. Wearing comfort, in relation to the conditions on the respective construction site, so that workers wear the equipment correctly for the required period of time

        A Member State of the European Union recommends that:

        • disposable respiratory protective equipment (EN FFP3) should be limited to situations where the concentration does NOT exceed 10 times the exposure limit and where exposure lasts for a comparatively short period of time. The softness of the mask is for comfort, but it is also the cause of mask deformation - especially during demanding work - which in turn can lead to leaks where the mask and face are tightly sealed
        • A half mask with a P3 filter provides slightly better protection than the disposable respiratory equipment because the half mask has a more reliable seal to the face.
        • Battery powered respiratory equipment (bonnets, suits) with a P3 filter is more suitable for longer duration or harder work.
        • Full face masks (or suits) supplied with compressed air (also known as compressed air breathing apparatus) should be used if concentrations could exceed 50 times the exposure limit.

        Another European Union Member State (the United Kingdom) provides tables of protection factors that can be used in selecting the best protective equipment for the situation, see Tables 8.1 and 8.2 below. The protection factors in the table also show that EN FFP3 disposable respirators are not suitable if the concentration in the air exceeds 20 times the exposure limit. Self-contained breathing apparatus (or self-contained breathing apparatus) should be used when concentrations exceed 40 times the exposure limit.

        The performance of facepieces (such as filter facepiece, full facepiece and half facepiece) is highly dependent on maintaining a good seal between the wearer's skin and the mask. Because there is a wide variation in face shape between individuals, one size or type of respirator may not fit every face. Therefore, it is important that:

        • a face fit test is part of the procedure for selecting appropriate respiratory protective equipment
        • the wearers of respiratory protective equipment are involved in the selection process, as this will ensure that the equipment selected is suitable for them and that they accept and use it properly

        The face fit test and the involvement of the wearers may be compulsory according to national legislation or directives.

        Beards, sideburns or even visible stubble will impair the sealing effect of the face mask. Workers with these characteristics will require respiratory protective equipment that is not dependent on a seal to the face (e.g. powered/actively ventilated bonnets or suits).

        Wearing conventional goggles also prevents a satisfactory seal. However, full-face masks exist that allow special frames to be attached inside the mask.

         

        European Directive 2003/18/EC also states that where the wearing of respiratory protective equipment is required, "this shall not be permanent but shall be limited to an absolute minimum of time for each worker. During the period of activities requiring the wearing of individual respiratory protective equipment, rest breaks shall be provided in accordance with national legislation and practice, depending on the physical and climatic stress and, where appropriate, in consultation with workers and/or their representatives."

         

        Table 8.1 Types of respiratory protective equipment available for protection against asbestos dust

        Table 8.2 Types of respirators available for protection against asbestos dust

        8.1.4  Proper use of respiratory protective equipment

        The European Directive 2003/18/EC states that workers must undergo training to acquire the knowledge and skills relating to "Purpose, range and selection, limits of effectiveness and correct use of respiratory protective equipment". attain.

        Respiratory protective equipment must be properly fitted and worn to ensure effective protection.

        For disposable respirators, both head straps should be fastened behind the head and the nose clip pressed into position on the nose saddle.

        For face masks, the straps should be tightened so that the equipment stays in place. The head harness should generally be worn under the bonnet of the coveralls.

        Respiratory protection must never be removed in a contaminated environment unless required due to an emergency (e.g. medical emergency).

         

        8.1.5   Care of the respiratory protection equipment

        Breathing equipment must be clean and in proper condition before being handed over to the wearer.

        Before using the respiratory protective equipment, the user should ensure that it is in good and usable condition, e.g.

        • Condition of the head harness system, face piece including seal and visor
        • Condition of the valves
        • Condition of the threaded connections and seals
        • Condition and type of filters; the filters must not yet have exceeded their expiry date.
        • Air flow rate for powered and compressed air equipment
        • Completeness and correct assembly of the respiratory protective equipment
        • and tests or checks recommended by the manufacturer have been carried out

        After use, the face masks must be cleaned and disinfected for the next use. The respiratory equipment shall be stored in a clean place specifically designated for this purpose.

        (See also section 8.3.2 regarding regular maintenance)


        Fig. 8.2 Breathing equipment. This illustration was provided by the UK HSE.

        8.2 MAINTENANCE OF THE EQUIPMENT

        8.2.1 Inspection and maintenance

        Regular inspections of the equipment should be carried out and recorded by a competent and responsible person. The maintenance and inspection schedule must include: the enclosure itself (on each shift), the H-type hoover(s), the hygiene equipment / decontamination unit (on each shift), the dust suppression equipment (on each shift).

        Inspections should include the following checks: Condition of equipment (wear and tear), cleanliness and availability of supplies in the decontamination unit (soap, towels, new filters for breathing apparatus, etc.), adequate lighting (in the airlocks and in the enclosure), supply of consumables for cleaning, functioning of the smoke generators and the negative pressure unit (e.g. check if the pre-filter needs to be changed).

        It is important that respirators are properly and regularly maintained, inspected and serviced.

        Air monitoring constitutes a part of the inspection and is described in chapter 16 described.

        All portable electrical equipment must be regularly checked for damage to cables and connections and tested for electrical safety. If portable electrical equipment is used in a humid environment, it must be suitable for use in such an environment.

        8.2.2 Maintenance

        All equipment must be regularly maintained to ensure that they are always fit for purpose.

        The negative pressure units (for the enclosure and the decontamination unit) must be regularly maintained by competent persons. After replacing the high efficiency filter, the filter performance should be tested with a safe replacement aerosol (e.g. di-octyl phthalate [DOP]) by a competent person for this test.

        The filters for waste water (from the decontamination unit and from the enclosure) must be changed regularly. The used filters are to be disposed of as asbestos-containing waste.

        Components of the respiratory protective equipment can wear out and thus impair the protective function. Therefore, respiratory protective equipment must be maintained regularly and this must be documented accordingly. National legislation may specify how long records must be kept and be available for inspection.

        The H-type hoovers must be maintained regularly.

         

        8.3 YOUR TASK

        If you employ or supervise people whose work involves handling the equipment described here for working with asbestos, then you should ensure that:

        • adequate equipment is provided and that it is in good condition;
        • the equipment is kept in good condition, i.e. the equipment is inspected, serviced and maintained regularly;
        • records of inspections and maintenance are kept;
        • the workers in relation to "Purpose, range and selection, limits of effectiveness and correct use of respiratory protective equipment". be trained;
        • adequate supervision is in place to verify the correct use of the equipment;
        • the protective equipment is properly maintained and used

        If you are going to use the equipment described above when working with materials containing asbestos, you should:

        • have received instruction on the proper use of the equipment;
        • always use the equipment properly (according to the instruction and the manufacturer's instructions);
        • have been involved in the selection of respiratory protective equipment;
        • Have undergone a face fit test for the respiratory protective equipment provided for you and have been instructed in its proper use;
        • always wear respiratory protective equipment properly and never remove it in areas potentially contaminated with asbestos.

        If you are a labour inspector, you should check whether:

        • the equipment is in good and serviceable condition, properly maintained and serviced, and whether the necessary maintenance records are available;
        • the respiratory protective equipment is used correctly;
        • a face fit test has been carried out for each worker for the type of respiratory protective equipment they use.

        9 GENERAL PRINCIPLES FOR MINIMISING EXPOSURE

        9.1 GENERAL CONSIDERATION

        Before carrying out any work likely to involve a risk of exposure to dust from asbestos or dust from materials containing asbestos, must a risk assessment must be carried out (to be performed as described in chapter 5 described) to determine the nature and extent of workers' exposure. The risk assessment provides the basis for decisions on the necessary protective measures. The following three chapters deal with the protective measures required in the following situations:

        • Work where asbestos may be found (e.g. maintenance work in buildings with a year of construction where some unrecorded asbestos-containing materials may still be present, chapter 10)
        • Work where the exposure level is so low that such work is not reportable (as described at the beginning of Chapter 11).
        • Work subject to notification (e.g. removal of asbestos, chapter 12)

        However, exposure must be minimised in all cases and general procedural principles exist for all three situations:

        • determine the quantity and location of the asbestos-containing materials
        • Restrict access to the work area accordingly (e.g. tapes, barriers or complete enclosure).
        • Put up clear and appropriate signage (e.g. Danger! Asbestos! Access for authorised personnel only!).
        • Enclose or protect (e.g. with durable polythene sheeting) the surrounding area, depending on the extent of the work, to prevent contamination with asbestos dust (this point is addressed later in this guide).
        • Reduce the number of authorised persons to a minimum
        • Use appropriate respiratory protective equipment and personal protective equipment (e.g. disposable coveralls and washable boots).
        • Use appropriate techniques to limit the release of fibres (e.g. wetting, wet stripping, local extraction ).
        • Avoid damage to the asbestos-containing material (e.g. remove and dispose of whole parts, remove and wrap whole panels).
        • Double bag or wrap and mark (as asbestos) all materials that may contain asbestos before disposal.
        • Clean thoroughly (see chapter 11 and 12)
        • Protect all transport routes to prevent the spread of asbestos contamination.
        • Ensure safe encapsulation (e.g. wrap or bag) and storage (e.g. in a lockable container) of all asbestos waste.
        • ensure safe transport to an approved waste disposal facility
        • Dispose of asbestos-containing waste only at landfills authorised to accept asbestos (in accordance with national legislation).
        • Ensure compliance with the necessary control measures to prevent exposure.

        As part of the preventive measures against exposure to asbestos by inhalation or ingestion,

        • the areas where activities involving asbestos are carried out must be areas where smoking is prohibited
        • areas must be created where workers can eat and drink without the risk of contamination with asbestos dust.

        9.2 YOUR TASK

        Persons performing tasks related to asbestos work shall be suitable for those tasks. A person is considered suitable if they have sufficient training, experience and knowledge in relation to the nature of the task to be performed. Factors to be considered include the complexity of the task and the hazards that may arise if the task is carried out incorrectly.

        If you employ or supervise people whose work is likely to involve handling asbestos, you should:

        • provide adequate training so that these people can identify the scope of work they can do with their competences (see chapter 7);
        • provide equipment appropriate to the situation for the work steps ahead;
        • provide for and ensure proper maintenance and inspection of this equipment;
        • Provide written instructions describing the procedures to be carried out according to the circumstances on site.

        If your work is likely to involve handling materials containing asbestos, you should:

        • Know and understand the precautions to be taken and the consequences if adequate precautions are not taken;
        • know what work can be done with your training stand and equipment;
        • observe the required control system to prevent exposure;
        • be able to call for specialist help if the scope of work with asbestos-containing materials is greater than that provided for by your work plan, equipment or training.

        If you are a labour inspector, you should:

        • check that the training records for the named persons show that these persons are trained for the assigned work;
        • check which training certificates refer to which employee by means of a photo;
        • check that the appropriate equipment is provided and maintained and inspected regularly;
        • check whether appropriate supervision and monitoring is ensured.

        10 JOBS THAT MAY INVOLVE ASEBSTEXPOSURE

        A number of trades are at risk of unexpectedly encountering and possibly damaging asbestos-containing material during work. These include: Carpenters, joiners, shop fitters, plumbers, gas supply technicians, electricians, computer wiring installers, caretakers and helpers. Demolition workers, scrappers and ship repair workers, as well as vehicle and other technicians may also come into contact with asbestos.

        Information on the presence of asbestos-containing material should be made available to these companies before they start their activities so that they can endeavour to avoid risks. However, they should still be prepared to encounter asbestos-containing material unexpectedly, as there is always a risk that information on asbestos occurrences may be incomplete, for whatever reason. Chapter 9 contains general procedures for work that may involve asbestos. This chapter gives detailed information for maintenance and servicing work where there is a risk of encountering asbestos. If asbestos-containing material is encountered unexpectedly, the first priority is to stop work immediately and prevent third parties from being exposed and spreading asbestos contamination.

        If you employ or supervise people (for example in the occupations listed above) who work on the shell or equipment of a building that may contain asbestos-containing materials, you should:

        • ensure that they are adequately trained to recognise possible asbestos-containing materials;
        • thoroughly check for asbestos-containing materials before starting any work;
        • assess the risk of exposure to asbestos;
        • provide written instructions on what these people should do if they unexpectedly find or damage material that may contain asbestos (stop work immediately, protect others from exposure, prevent spread of contamination);
        • if such an eventuality occurs, have a sample of the suspect material tested or proceed as if the material does indeed contain asbestos.

        If the presence of asbestos is confirmed, you should:

        • assess whether the exposure for workers during clean-up operations is occasional and of low level (example in section 1);
          1. if this is the case, then this work may be exempt from melede (and the procedure in chapter 11.1 is relevant);
          2. if this is not the case, the work must be treated as notifiable work (chapter 12);
          3. whether the work is notifiable or not, a written risk assessment must be prepared and kept available;
        • decide whether you need to employ a specific subcontractor in accordance with national legislation (Chapter 6);
        • report the incident to the enforcement authority (if applicable);
        • keep records of the evidence (laboratory analysis of samples) and the reasons for your decision;
        • review the incident and initiate measures to prevent a similar event from occurring in the future;
        • if necessary, record workers' exposure to asbestos and provide individuals with information for their medical records (see Chapter 19);
        • Keep records following good practice (e.g. training records, risk assessment, written work instructions, laboratory analyses, incident records).

        If you are carrying out work (in a building, on equipment or on a vehicle) where there is a risk of encountering asbestos or damaging material containing asbestos, you should:

          • know what to do if, in the course of your work, you either discover materials that are likely to contain asbestos or accidentally damage materials containing asbestos.

        If you come across asbestos unexpectedly:

          1. you should stop all work immediately and report this to the person in charge.
          2. arrange (or ask the responsible person to arrange) for sampling of the suspect material for analysis or proceed on the assumption that the material contains asbestos.

        If you accidentally damage materials containing asbestos, you should:

        • interrupt the work immediately;
        • prevent all persons from entering the area;
        • Inspect your clothing for dust and particles, and if present, remove the contaminated clothing and store in a plastic bag; shower thoroughly (if possible) or wash, and rinse away any dust from the washing facility.

          If you are a labour inspector, you should:

          • check whether the above recommendations have been implemented, e.g. immediate availability of written work instructions, content of these instructions and workers' compliance with the content of these instructions; in addition, check whether the procedures have been implemented;
          • check whether the risk assessment adequately evaluates the risk (to workers and others);
          • check that adequate precautions have been established (e.g. in the work plan and work practices) and implemented;
          • Encourage a critical review of management procedures to prevent future incidents;
          • if an incident has occurred:
            1. ensure that measures appropriate to the health risk have been taken;
            2. give factual and reassuring advice regarding the health risk;
            3. Ensure that records are kept of the incident (to enable improvements in the general policy or for legal proceedings );
          • verify compliance with national legislation concerning these matters.


          Fig. 10.1    Coverall (overall with head and neck protection) and disposable breathing mask

          11 LOW-RISK WORK WITH ASBESTOS

          11.1 DEFINITION OF LOW-RISK WORK

          The European Directive 2003/18/EC on the protection of workers from the risks related to exposure to asbestos states that if the risk assessment shows a low risk of exposure, the work does not have to be notified to the competent authority in the EU Member State. The criteria of Article 3 of the European Directive 2003/18/EC regarding a decision on whether work meets the criteria for occasional low-level exposure are set out in section 6.3 described. However, the interpretation of Article 3 is (at the time of writing this Guide) under discussion in the Member States.

          In essence, work falls within the scope of this chapter when the exposure for the worker is "Occasional and of low altitude", and if the results of the risk assessment (carried out as described in chapter 5 described) show that exposure is below the occupational exposure limit value for asbestos (calculated as a weighted average of 0.1 fibres/cm3 over a period of 8 hours [or 1 hour or 4 hours in some EU Member States]). Examples of work that may pose a low risk (and may not be reportable depending on national legislation) are work on non-friable, undamaged materials containing asbestos, removal of intact asbestos-containing materials without damage, or encapsulation/encapsulation of some asbestos-containing materials in good condition. Handling non-friable intact asbestos-containing materials is likely to result in low exposure.

          The following operations, if carried out with care to minimise dust release to air, may be considered as examples of low risk operations: Removal of a single asbestos ceiling tile, Removal of a single intact asbestos insulation board, Drilling of up to 20 holes (diameter less than 20 mm) through asbestos insulation boards (with appropriate precautions to prevent the release of dust, including simple local extraction with an H-type hoover mounted on a bonnet over the drill). Other possible examples of low risk can be found in the UK Health and Safety Executive's guidance 'Asbestos Essentials' ['Essential Points for Asbestos' for Health and Safety Managers] (HSG 210 and HSG 213, HSE (2001)). Guidance ED 809, published by INRS, also gives examples of maintenance activities, some of which can be classified as low risk. However, the typical concentrations published in the ED 809 guide show that workplace concentrations for a wide range of simple maintenance tasks exceed the value of 0.1 fibres/cm3 exceed during the performance of the task. Therefore, depending on the duration of the work, they may result in a weighted average workplace concentration exceeding the exposure limit value.

          If only limited information is available to carry out the risk assessment with regard to possible exposure before starting the work, then measurements should be taken to establish the actual conditions and thus provide a more reliable risk assessment if similar work is to be carried out in the future. The control measures must be sufficient to cover all uncertainties in the risk assessment.

          Information on published estimates of the level of asbestos exposure is available for various examples in a database (in France) called Evalutil

          (http://etudes.isped.u-bordeaux2.fr/evalutil.) available. This database is described in Annex 1.

          11.2 GENERAL PROCEDURES FOR LOW-RISK WORK

          11.2.1 General principles

           

          Before starting work on or near materials containing asbestos, the risk assessment and planning (as described in chapters 5 and 6 described) have been completed. The staff should have received sufficient training (chapter 7) and have the appropriate equipment (Chapter 8). Measures for separating and compartmentalising the work area, suitable respiratory protection equipment and personal protective equipment, as well as washing facilities have been provided, as described in chapter 9 set out, are provided. Assuming that these preparatory measures have been taken, this chapter gives the practical methods for eliminating or minimising exposure.

           

          11.2.2 Practical approaches

          If you employ or supervise persons carrying out low-risk work with asbestos-containing materials, you should ensure that planning, preparation, training, etc., as set out below and in the preceding chapters, have been fully completed.

          When carrying out a risk assessment, you should ensure that it also covers the risks to other workers and third parties.

          When giving written instructions on how to carry out the work on site, you should include the practical procedures described below with all site-specific details (e.g. the route to be used for removing the waste).

          Limit the number of people involved in the work.

          They should also ensure that the equipment required to implement these procedures is available and in good and serviceable condition.

          You should ensure that management and control are sufficient to enable you to verify compliance with the instructions for safe working practices.

          Make and keep records of personnel, working time and measured or estimated asbestos exposure

          If you are carrying out low-risk work (as defined above) on asbestos-containing material, you should ensure that the preparatory measures mentioned above with reference to other chapters have been completed (e.g. that you have written instructions defining and limiting the scope of the work and specifying the precautions to be taken (Chapter 5), the appropriate training (Chapter 7) and the necessary equipment (chapter 8) set). Then you should:

          • separate the area and ensure the safety of others;
          • plan the work in such a way as to minimise or prevent the adverse effects of asbestos-containing materials;
          • Cover surfaces with 125 µm thick [thickness 500] or 250 µm thick polythene sheeting (to be disposed of as potentially contaminated with asbestos after the work);
          • carry out the work only with the absolutely necessary number of workers;
          • Use methods that minimise the release of asbestos dust (e.g. shaded extraction, damp spraying);
          • Use suitable respiratory protective equipment approved for asbestos (e.g. EN 149 FFP3);
          • avoid breaking material containing asbestos;
          • Avoid direct overhead work on material containing asbestos;
          • use hoovers approved for asbestos (H-type) and only use dust-suppressing cleaning methods, e.g. damp cloths, dust-holding cloths (to which dust adheres) - use NO Broom or compressed air for cleaning;
          • If the work includes overhead work on materials containing asbestos,

          e.g. removing a single ceiling tile, then build an approx. 1 m2 large, simple enclosure (covering the area of the panel) to prevent the spread of dust. This can be a simple wooden frame covered with a durable polythene film (e.g. 125 µm thick [thickness 500]). Check the integrity of the enclosure and the polythene sheeting with a smoke test tube, especially at the joints. A colleague should use a bright light source or torch to check if there are any signs of leaks that can be detected by smoke penetrating to the outside.

          • Carefully remove screws or nails, avoiding the release of dust, by either:
            1. use thick paste (wallpaper paste) to coat the screw or nail; or
            2. Fix a local exhaust over the screw and then connect it to a hoover ( H-type) approved for asbestos.
            3. and then the removed screws or nails as contaminated with asbestos dust.
          • Remove asbestos-containing panels or tiles as a whole and avoid breaking or damaging them.
          • Place the asbestos-containing materials carefully and directly into the labelled plastic bags (i.e. do not allow unpackaged waste to accumulate).
          • Fill the waste bags only partially so that they can be closed easily and correctly.
          • Avoid pushing air out of the bags when closing them, as this air can carry dust and asbestos. Close the bag carefully and place the closed and labelled bag in a second, transparent and durable plastic bag.
          • Leave larger items that do not fit into bags (e.g. complete asbestos insulation panels) intact and wrap them with two layers of polythene film with a clearly visible label "Asbestos" (e.g. securely fastened inside the outer, transparent film layer).
          • Avoid any risk of contamination spreading by following a pre-established plan and proceeding with caution to avoid accidental damage to the bags when transporting them from the work site to a safe waste storage site.
          • Stow the bagged or wrapped asbestos-containing materials in a secure container (e.g. lockable container) before removal.
          • Always wash thoroughly when you leave the work area.

          After completing the work, ensure that the work area is returned to a clean condition (use an H-type hoover and/or damp cloths for cleaning). Dispose of used cloths as contaminated with asbestos.

          Finally, it is necessary that you follow hygiene procedures when removing personal protective equipment and respiratory equipment to ensure that you do not expose yourself or others to asbestos that may have remained on your coveralls. Use disposable coveralls that are disposed of as asbestos-contaminated waste after use or washable coveralls that can be washed off under a shower before removal. An H-type hoover should be used to remove dust from the coveralls; workers can help each other clean the coveralls. This will ensure that the back of the coveralls are also reached. Wear your respiratory protective equipment until the end.

          • Wash your boots
          • Remove the coveralls; turn disposable coveralls to the left to enclose the remaining dust
          • Wipe the outside of your respirator (with a damp cloth)
          • Rinse and wash (shower if possible) and only then remove your personal respiratory equipment
          • Take your work clothes NOT Take home - these should be disposable coveralls or coveralls that have been washed in a special laundry as contaminated with asbestos.

            If you are a labour inspector, you should:

            • unannounced visit/inspect some construction sites where such works are likely to be carried out;
            • check that the written instructions are available and understandable and include the recommendations made herein;
            • check that records of training, equipment, respiratory protective equipment and personal protective equipment are available, up to date and appropriate;
            • look for evidence that the above procedures have been fully and consistently implemented to prevent the release of dust, to prevent exposure and to prevent the spread of contamination. For example, any asbestos insulation board that has been removed should be intact and any screw hole (visible through packaging) should be in a condition that shows careful removal of the screw;
            • check that the risk assessment corresponds to the work carried out;
            • check whether the risk assessment sufficiently takes into account the safety of other persons;
            • check that the work has been correctly classified as non-notifiable;
            • check that appropriate monitoring is in place to support the exposure estimate in the risk assessment and that exposure measurements are properly recorded;
            • check whether the results of the exposure monitoring show that the actual exposure was adequately assessed in the risk assessment;
            • check whether the company's records are complete and traceable;
            • verify compliance with the relevant national legislation.

            These general principles cover the majority of low-risk work. The written instructions of the person employing or supervising the workers specify which procedures apply to specific tasks. In the next section, the principles are applied to a specific task by way of example.


            Fig. 11.1 Use of warning tape (labelled "DANGER removal of asbestos") and signs to separate an area.


            Fig. 11.2 Warning signs to point out dangers and precautions in pictures and words: "ATTENTION Asbestos work"; "Unauthorised persons are not allowed to enter - no smoking, eating, drinking"; "Beyond this line, respirators, disposable coveralls and coveralls, which include footwear, must be worn".

            11.3 EXAMPLES OF LOW-RISK WORK

            11.3.1 Cleaning the gutter of an asbestos cement roof

             

            The fragments in the gutter on an asbestos cement roof may contain asbestos. Therefore, the removal of fragments may pose a risk of asbestos exposure and the spread of asbestos contamination. Therefore, a person carrying out this work must be properly instructed.

            The required personal protective equipment includes:

            • Disposable coveralls with bonnet
            • possibly waterproof overalls (depending on the weather)
            • Boots that can be decontaminated (boots without laces)
            • according to the risk assessment it will be clear that respiratory protective equipment is not required Disposable respiratory protection (EN 149 FF P3) is however recommended.

            The tools needed include:

            • Access platform (e.g. scaffolding or mobile lifting platform)
            • Warning tapes and warning signs
            • Bucket with water and detergent
            • Watering can or sprayer
            • Shovel or trowel
            • Cloths
            • suitable asbestos waste container (e.g. labelled and colour-coded polythene bag) Preparation of the work area includes the following:
            • if the work is carried out at height, the appropriate precautions must be taken to protect against a fall
            • access to the work area must be restricted (e.g. by warning tape or warning signs)
            • the number of employees is to be reduced as far as possible
            • safe access points are to be established

            The procedure for cleaning the gutter includes the following:

            • Mixing water and detergent
            • Spreading or spraying the cleaning agent dissolved in water into the gutter; however, not so much water should be used that a sludge is created in the process
            • Remove the fragments with a shovel or trowel; they are to be taken directly to the waste container
            • Re-wetting of the fragments if dry material is discovered.

            The subsequent cleaning includes the following:

            • Using damp cloths to clean the equipment
            • Using damp cloths to clean the access equipment
            • Deposit the fragments, used rags and potentially asbestos-contaminated waste in the asbestos waste bin.

            Personal decontamination should include the following:

            • Disposal of coveralls as potentially contaminated
            • Cleaning the remains of the fragments from the boots
            • Washing/showers

            The procedure for inspection after completion of the work should include a thorough examination of the platform and surrounding area to ensure that they have been properly cleaned.

            If you employ or supervise people who will remove fragments from gutters on asbestos cement roofs, you should assume that the fragments contain asbestos. You should therefore organise and ensure that:

            • the risk assessment includes the risk of asbestos and the risk of falling, and also considers the risk to other people (from asbestos and falling material);
            • written work plans are available that also include safe working at height;
            • the number of people present is reduced as much as possible;
            • these people are appropriately trained - in relation to the risk of asbestos and the risk of working at height;
            • the correct protective and safety equipment is in place;
            • measures have been taken for proper waste disposal (see chapter 15);
            • Strict visual inspections carried out after completion

            When you do this work,

            • Restrict access (e.g. with warning tapes or warning signs);
            • keep the fragments moist, but avoid excessive use of water, otherwise it will be even more difficult to control the spread of contamination;
            • place the fragments in a suitable waste container (e.g. labelled polythene bag).
            • be especially careful when it is windy, as the contamination could be spread further by the wind and pose a danger to workers on the roof;
            • After the work has been carried out, everything must be

            Always follow the employer's written work plan for all work. Use safe procedures when working at height.

            If you are a labour inspector, you should:

            • Check that the above recommendations have been implemented and that this is reflected in the work plans and training;
            • ensure that adequate precautions have been taken for working at height;
            • carry out the checks generally listed for low-risk work.

            11.3.2 Removing an asbestos insulating wall panel

             

            The removal of a single, screwed-on asbestos insulation wall panel with an area smaller than 1 m2. This task falls within the scope of non-notifiable work, provided that the asbestos insulation board has only minor damage, does not have a thick coating (so that adjacent boards could be damaged during removal) and is not ceiling board.

            The protective equipment required for this task includes the following:

            • Disposable coveralls with a bonnet
            • Boots that can be decontaminated (boots without laces)
            • Disposable respiratory protective equipment (EN 149 FF P3)

            The required equipment includes the following:

            • Heavy-duty polyethylene film (250 µm) and insulating tape
            • Warning tapes and warning signs
            • H-type hoover (approved for asbestos)
            • Magnet and screwdriver
            • Sealant, B. Polyvinyl acetate (PVA)
            • Bucket with water, sprayer and cloths
            • Asbestos warning sticker
            • suitable asbestos waste containers (e.g. a labelled polyethylene bag)
            • adequate

            The work area is to be prepared as follows:

            • safe access and protection against the risk of falling when work is carried out at height
            • Restricted access (close door, use warning tapes and warning signs).
            • Erecting a safety access platform when work is carried out at height
            • Examine the panels. If the panels are in good condition, proceed as described below. If they are in poor condition or most likely to be damaged, this is to be considered as reportable work (see chapter 12).
            • Use the 250 µm thick polyethylene film to cover surfaces that could become contaminated.
            • adequate lighting For removing the panel:
            • Locate steel screws by means of magnet
            • Locate brass screws by carefully scraping off the paint with local suction
            • Loosen screws and apply local suction
            • Carefully loosen one end of the panel and vacuum the back surface
            • Spray the back surface with the sealant
            • Remove all remaining screws in the same way
            • Lift the panel down and place in the waste container or double wrap in 250 µm thick polythene film and attach asbestos warning label.

            Clean the area and equipment:

            • Use the H-type hoover to clean the frame.
            • Use a screwdriver and the H-type hoover to clean the screw holes.
            • Use the H-type hoover and damp cloths to clean the equipment.
            • Put broken pieces, the used cloths, the polythene film and other rubbish in the waste container.

            Follow the procedures for personal decontamination as described in the previous example.

            Perform a visual inspection of the area to ensure that it has been properly cleaned.

             

            11.3.3 Maintenance or removal of asbestos cement materials

             

            Provided asbestos cement materials are properly handled, their removal is likely to be classified as low-risk work in the risk assessment. However, if the use of power tools is necessary, the risk assessment may give a different classification. (Typical concentrations for work on asbestos cement are shown in Annex 1). The risk assessment should also list appropriate respiratory and other personal protective equipment.

            For Maintenance workwhich may involve contact with asbestos-cement materials, the procedure should follow the general procedures in section 11.2.2 and in addition ...

            • if possible, avoid the following:
              1. The fixing of objects to the asbestos cement; or
              2. Passing wiring or cables through the asbestos cement
            • Protect all adjacent surfaces from contamination
            • Keep the material moist when moving or working on it.
            • avoid breaking asbestos cement
            • Use hand-operated tools instead of abrasives (such as sandpaper grinders) or pneumatic tools.
            • Abrasive or pneumatic tools at the lowest speed setting and with local extraction Extraction is via:
              1. a casing connected to a local exhaust and fixed around the drill (with spring fixing so that the casing always remains in contact with the material when the drill penetrates the material)
              2. or via sealed-off extraction with the nozzle of an H-type hoover approved for asbestos.
            • clean the work area (with an H-type hoover), and dispose of all bridge pieces as asbestos-containing waste.

            At the Removal of asbestos cement materials (for demolition or renovation) the procedure should follow the general procedures described in section 11.2.2, and:

            • the asbestos cement should be removed prior to demolition
            • other surfaces should be protected from contamination during remediation
            • breaking of the asbestos-cement materials should be avoided; they are to be removed as a whole
            • the material should be kept moist while working on it - but not too much water should be used as this would lead to mud formation
            • if asbestos cement is removed from great heights, the material should be lowered onto a clean, hard surface
            • (for the removal of the asbestos cement materials at high altitudes, a safe access method shall be used).
            • the asbestos-containing waste and fragments should be removed as soon as possible to avoid the materials breaking if people step on them or vehicles drive over them asbestos cement should NOT be pushed together into larger piles
            • Asbestos cement fragments should NOT be swept together
            • the asbestos-cement waste and fragments are to be disposed of as asbestos-contaminated waste

            Large pieces of asbestos cement should be disposed of as a whole. They should either be placed in a covered container or truck or wrapped in polythene sheeting before disposal.

            Small fragments and dust accumulations shall be removed with an H-type hoover approved for asbestos. Fragments that are too large should be collected and bagged as asbestos-containing waste.


            Fig. 11.3 Use tape and polythene sheeting to cover a work area before removing asbestos sealing material from a valve.

            Fig. 11.4 The asbestos seal on a valve is moistened


            Fig. 11.5 Use of hand tools to remove asbestos gasket and asbestos debris from a valve


            Fig. 11.6 Use of a hoover to immediately capture the dust created when asbestos comes off a valve


            Fig. 11.7 Carefully clean the work area with an H-type hoover and a wet rag.

            12 REPORTABLE WORK WITH ASBESTOS

            12.1 INTRODUCTION

            1.2.1 Definition of reportable work

             

            Section 6.3 described the criteria established by the European Directive on the protection of workers from the risks related to exposure to asbestos (83/477/EEC, last supplemented by Directive 2003/18/EC) for deciding whether the Directive's provisions on notification and medical surveillance can be waived. Thus, work is always considered to be notifiable unless it is

            "occasional exposures of workers of low levels are involved" and the risk assessment clearly shows that the exposure value for asbestos in the air in the working area (0.1 fibres/cm3, weighted average concentration over 8 hours (or 1 or 5 hours in some other EU Member States)) is not exceeded, and provided that the work is one of the restricted activities (see definition in section 6.3). In the case of reportable work, medical surveillance must be ensured (see chapter 19), except that the practical precautions described in this chapter must be followed.

            Work to remove asbestos is clearly notifiable work. The European Directive 2003/18/EC states: "Before carrying out demolition or asbestos removal work, undertakings shall demonstrate their relevant expertise. Such evidence shall be provided in accordance with national legislation and/or practice."

            12.2 GENERAL PROCEDURES FOR NOTIFIABLE WORK

            11.2.1   Summary of the preparatory work

            The previous chapters have described the preparatory work that is required before carrying out notifiable work:

            • Risk assessment and written work plan (chapter 5)
            • Decision on how to carry out the work, including consideration of all options where treatment of the asbestos is not required (Chapter 6)
            • Instruction of the worker, the supervisor/the site manager/the employer (chapter 7)
            • Equipment (chapter 8)

            The general procedure for preventing the risk of exposure when working with asbestos was described in chapter 9 described, e.g. separation and compartmentalisation of the work area, respiratory protection equipment and personal protective equipment, and washing facilities for workers.

            The requirement for medical surveillance for all workers who may come into contact with asbestos has already been outlined (Chapter 6). The requirements for the employer to provide medical surveillance and the purpose and benefits of medical surveillance are set out in chapter 19 described.

            Planning may include decisions on whether to remove, leave, monitor or process the asbestos-containing material at the respective sites. Guidance on this varies between Member States of the European Union. In Germany, the recommendation is to remove all asbestos-containing material. In the UK, the recommendation is to leave asbestos materials in good condition on site. Both approaches have certain advantages: removing all asbestos-containing material is a final solution; however, it may cause immediate exposure that could otherwise have been avoided. Leaving asbestos-containing materials in good condition is a safe course of action, provided that effective monitoring and management ensures that any future remediation work is carried out with the necessary precautions regarding the asbestos present and exposure to asbestos.

            If, as already described in the previous chapters, you employ or supervise persons who will carry out reportable work with materials containing asbestos, you should:

            • have ensured that the planning (risk assessment and work plan), preparatory work, instruction, etc. have been completed and that the necessary documents are available on site and understood by the workers (chapter 5 to 7);
            • have ensured that the safety of third parties has been taken into account and is protected;
            • have reached agreement with the building managers and any other persons with an interest in ensuring that the work plan is fit for purpose and that no other health or safety risk arises from the implementation of the plan;
            • have ensured that the Emergency procedures in the work plan Include emergency procedures for the entire site and that key personnel understand all relevant emergency procedures;
            • have ensured that the detailed, site-specific work plan (prepared by a competent person) includes all practical information of the site (e.g. the route used to remove the waste, any other health and safety risks existing in the vicinity of the site or arising due to exposure to asbestos) (Chapter 5);
            • have ensured that the equipment (including personal protective equipment and respiratory protective equipment) required to implement these practices is available and in good and serviceable condition, and that records of periodic inspections of this equipment by the responsible person(s) are easily located (Chapter 8);
            • have ensured that workers exposed to asbestos and their associated documentation can be quickly identified (Chapter 7).

            As the employer of those exposed to asbestos, you should:

            • have taken out insurance policies with adequate coverage;
            • give all workers the opportunity to have an asbestos-related health check before starting work with asbestos and at least once every 3 years thereafter (Chapter 19);
            • ensure that health records and asbestos exposure records are kept for at least 40 years;
            • ensure that all other records are kept in good order and condition and retained for at least 10 years.

            Directive 2003/18/EC requires you, before starting work, to ".A notification to the competent authority (of the EU Member State) in accordance with national laws and regulations." communicate; (these regulations may specify when the notice must be given - e.g. 14 or 28 days' notice). "The notification must contain at least a brief description of the following points:

            • Location of the workplace
            • Types and quantities of asbestos used or handled
            • Activities carried out and procedures used
            • Number of workers involved
            • Start and duration of the work
            • Measures to limit the exposure of workers to asbestos".

            The notice may further contain the following:

            • Work plan
            • Telephone numbers of contact persons
            • planned dates for the other core elements of the works (e.g. smoke test to check the integrity of the enclosure and asbestos test).

            "If there is a change in working conditions that may significantly increase exposure to asbestos dust or dust from materials containing asbestos, a new notification must be made." You should also inform the national authorities of any changes to the work plan or significant changes to working methods.

              If you are required to carry out reportable work on asbestos-containing materials as part of your employment (as described in section 12.1.1 defined), the preparatory work mentioned in the previous chapters should be completed. Make sure that the following has been done:

              • proper training (chapter 6), (you must have valid training certificates);
              • Face fit test for the respiratory equipment you will be using;

              asbestos-related medical examination (Chapter 19) in the preceding two years.

              If you are a labour inspector, you should:

              • work proactively on large or complex projects, scrutinising and questioning the work plan before starting this work;
              • be available for consultation with people who are developing major projects or who find it difficult to implement best practice;
              • check that the notification contains the information set out above (in particular, types and quantities of asbestos-containing material, number of workers involved, timing of the start of the work, and measures taken to limit exposure for workers);

              ensure that your own training and equipment are adequate to protect you from the risk of exposure when visiting construction sites.

              12.2.2 Summary of site management requirements

               

              The practical organisation of asbestos removal work has an important function in the safe execution of the work.

              If work is carried out at height on site, safe procedures for working at height must be specified in the work plan (including protection from falls from a height (see e.g. UK Health and Safety Executive publication MISC614). The procedures may include the use of towers, scaffolding or mobile lifts. Procedures should include protection of equipment from contamination (e.g. by wrapping or covering with polythene sheeting), erection of a tower or scaffold (e.g. use of appropriate protective equipment), safe removal, decontamination of equipment before dismantling the enclosure and inspection/testing (for contamination).

              If you employ or supervise persons who will carry out reportable work with materials containing asbestos, you should, as part of your preparatory work:

              • a capable person responsible for the supervision of the work

               

              Site management should ensure that the work area is properly controlled and that the following is ensured:

              • Adequate separation and enclosure of the work area
              • Functional warning signs and barriers at all times
              • adequate protection of the safety of workers and other persons
              • adequate air monitoring at the enclosure during the works (see chapter 16) and immediate transmission of the results to the site supervisor
              • Good operating condition of the decontamination facility, from the start of work on the site until after the enclosure has been dismantled.
              • an emergency plan containing sufficient details for the particular site, e.g. contact details for the local hospital.

              You should also have an asbestos test carried out by an independent, competent person.

              If you are going to carry out reportable work on materials containing asbestos (as described in section 12.1.1 defined), the preparatory work mentioned in the previous chapters should be completed. Make sure that the following is provided:

              • written work plan that defines and limits the scope of the work and determines the precautions to be taken (Chapter 5);
              • required equipment (chapter 8).

              You should:

              • ensure that you understand and can follow the work plan;
              • DO NOT use methods that are not specified in the work plan, unless the plan has been supplemented in this respect beforehand;
              • contact your supervisor/site manager/employer:
              1. especially if you expect or encounter unforeseeable difficulties. In this case, stop work immediately until the risk assessment and/or work plan has been re-examined by a person responsible for it.
              2. If you encounter problems with respiratory equipment, personal protective equipment or control measures, stop work immediately.
              • be able to prove your identity if necessary.

              If you are a labour inspector, you should:

              • check that the work area has effective separation, e.g. with barriers, signs and controls;
              • check that the decontamination equipment is in good condition and on site at the start of the work;
              • check that the emergency plan is readily available and that it contains sufficient site-specific information;
              • check that the equipment available on site corresponds to the methods described in the work plan (e.g. dust suppression equipment, hoover).

              12.3 ENCLOSURE FOR CARRYING OUT ASBESTOS REMOVAL WORK

              12.3.1 Purpose and exceptions

              Purpose

              The purpose of an enclosure is to prevent the spread of asbestos contamination and exposure of others. Regulated access via airlocks and decontamination of personnel and equipment on exit ensure that asbestos contamination remains inside the enclosure.

              Exceptions

              Enclosure is necessary for all asbestos removal work unless the concentration of asbestos dust is very low, the site is fairly secluded (so that other people are not affected) or enclosure is not practical,

              e.g. in the case of open-air pipe systems on high levels or soffits (panels under overhanging rafters) on the roofs of buildings. In these cases, other methods must be used to prevent the spread of contamination and exposure of other people.

              12.3.2 Preparatory work and description

               

              Preparation

              Before setting up an enclosure, the site must be prepared using appropriate precautions (which are described in the risk assessment (chapter 5) should be specified) to protect against exposure to asbestos, e.g. by personal protective clothing, respiratory protective equipment and hoovers approved for use with asbestos (H-type hoovers). Asbestos dust may be released when the enclosure or access equipment (e.g. scaffolding) is erected.

              The preparatory work should include the following:

              • Disposal of all non-asbestos waste in the area (where the enclosure, transport routes and waste container are located) as non-asbestos waste.
              • Remove or cover items that would be difficult to clean if they became contaminated and check that these items are not already contaminated.
              • Clear away loose fragments of asbestos-containing materials and dispose of these fragments as asbestos-containing waste to prevent this type of material from becoming trapped under the enclosure.
              • Safeguarding against all other, potential hazards (e.g. causes for water leaks and for the escape of gases).
              • Blocking openings (such as air conditioning units, ventilation systems, etc.) to prevent the spread of asbestos dust outside the enclosure.
              • Ensure adequate electricity and water supply
              • An EU Member State requires an independent power supply from the mains by means of a generator (INRS Directive 815) to provide a safer electrical system during wet removal operations
              • Establishing access to the equipment
              • Ensure that the enclosure does not block any escape routes (fire) (e.g. for other people in the building) or that suitable alternative routes are signposted.
              • Ensure that the smoke detectors are switched off when carrying out the smoke test in the enclosure.
              • Ensure that the electrical equipment in the work area has been switched off and secured.
              • Ensure that emergency systems are in place for power and water supply

              Description

              An enclosure can use existing building structures or be a completely free-standing temporary structure. Existing surfaces must be smooth and impervious or covered with polythene sheeting. Generally, an enclosure will be constructed on durable (250 µm thick) polythene sheeting. The foil is disposed of as asbestos-containing material after completion of the work. In France, two layers of durable polyethylene sheeting are recommended. The enclosure should have the following:

              • Soil cover (to contain the spread of contamination), unless the existing soil is smooth and impermeable so that it can be cleaned up
              • Airlock through which staff can enter and exit the enclosure
              • Separate airlock (sometimes also called baglock) for passing adequately packaged (e.g. bagged or wrapped) waste out of the enclosure.
              • Exhaust ("negative pressure unit") with high-performance filter to create a slight negative pressure (20 Pascal is recommended - one EU Member State requires

              at least 10 Pascal, another at least 5 Pascal) within the enclosure and to establish a constant flow of fresh air through the enclosure.

              • the air exchange rate in the enclosure should be at least 8 per hour
              • Viewing windows (each with minimum dimensions of 600 mm x 300 mm) ensuring visibility into all core areas (or surveillance television, if required)
              • direct connection to the decontamination unit, if possible, through airlocks
              • Additional airlocks if a direct connection to the decontamination unit is not possible, in order to create a separation when changing from the contaminated coveralls to the intermediate coveralls, which are only worn during the transition to the decontamination unit.

              The enclosure must be as airtight as possible to prevent release in the event of a vacuum unit failure.

              The enclosure must have the following properties:

              • it must be weather resistant (if outdoors) and/or
              • be made of orange-coloured, fire-retardant polyethylene film (if there is a risk of ignition and/or restricted access)

              These characteristics (weather resistance, fire resistance) of the enclosure shall be clearly indicated in the work plan.

              The enclosure may only be entered by authorised personnel wearing personal protective equipment and suitable respiratory protective equipment.

              Signs shall be provided to indicate the risk of exposure to asbestos and to indicate restricted access and the need to wear protective equipment. These signs shall comply with national legislation.

              If you employ or supervise persons who will carry out reportable work with asbestos-containing materials, you should ensure as part of your preparatory work that:

              • the preparation of the construction site and the erection of the enclosure is carried out by appropriately trained and competent workers
              • Address risk assessment and work plan to site preparation
              • Preparation work is adequately monitored and inspected
              • effective systems are in place to monitor, inspect and maintain the enclosure (see Section 7).

              If you employ or supervise persons who will carry out reportable work with asbestos-containing materials, you should ensure as part of your preparatory work that:

              • the preparation of the construction site and the erection of the enclosure is carried out by appropriately trained and competent workers
              • Address risk assessment and work plan to site preparation
              • Preparation work is adequately monitored and inspected
              • effective systems are in place to monitor, inspect and maintain the enclosure (see Section 7).


                Fig. 12.1 Access to an enclosure. Starting clockwise at the top, the arrows show: bag lock, waste container, viewing window, negative pressure gauge, negative pressure unit, power supply unit, wetting agent and decontamination unit.


                Fig. 12.2 Negative pressure units and air outlet tubes, viewing windows and warning notices

                12.3.3 checks the condition of the equipment and installations related to the work

                Workers inside the enclosure must go through the full decontamination procedure each time they leave the enclosure. Therefore, it is important that a person is available outside the enclosure to:

                • establishes communication between the people inside and outside the enclosure
                • Controls the entry of people through the airlock, verifies that personnel are authorised and records who has entered and left the enclosure.
                • organises the movement of equipment into the enclosure and the removal of bagged (or wrapped) waste through the bag lock
                • checked the condition of the equipment and installations related to the work

                This person does not need to wear the same type of respiratory equipment as the workers inside the enclosure. However, he or she should at least wear disposable respiratory protection (for use with asbestos, e.g. EN FFP3) and coveralls to protect against exposure in case one of the bags is accidentally damaged. She should routinely undergo a decontamination procedure at the end of the shift.

                Any equipment taken into the enclosure must be prepared in such a way that possible decontamination of this tool can be carried out as easily as possible, e.g. attach plugs to the ends of the scaffold tubes and wrap scaffold plates with polythene sheeting. However, boards that have been wrapped with polythene sheeting pose a slip hazard when wet. In this situation, thin boards (plywood) are required as a walking surface. This wood must be disposed of as contaminated waste and must not be reused.

                If you are a labour inspector, you should:

                • check whether documentation is available on inspections and checks of the enclosure (visual inspection, negative pressure, ventilation, smoke tests);
                • check that a person outside the enclosure is removing the waste (etc.) and that this person is wearing suitable respiratory equipment and protective clothing;
                • check that there are sufficient viewing windows;
                • look through the viewing windows and look at the TV surveillance footage to see if, for example, the field of vision is indeed not restricted, the work is carried out according to the work plan and the waste is cleared away as soon as the material is removed;
                • check that the transport routes (between the enclosure and the decontamination unit and between the enclosure and the secure waste storage facility) are via the shortest suitable route;
                • Check the transport routes to ensure that they are kept clear as specified in the work plan and that no waste is left unattended on the transport route.


                  Fig. 12.3 Enclosure for removing the insulation of a flue gas pipe.

                  12.4 DECONTAMINATION OF PERSONS


                  12.4.1 The decontamination unit

                   

                  The decontamination unit should be the first piece of equipment to be set up on site and the last to be dismantled.

                  The decontamination unit is essentially a "clean changing room" separated by a self-closing door from the shower, which in turn is separated by a self-closing door from a "dirty changing room". The principle of operation is that staff in the clean end remove street clothes and put on clean respiratory equipment and clean coveralls (coveralls with head and neck protection) before proceeding through the shower section to the dirty end. If possible, the dirty section should be directly connected to the enclosure via an airlock.

                  Mirrors should be provided at both ends of the decontamination unit to enable workers to check the fit of respiratory protective equipment and coveralls.

                  After working in the enclosure (i.e. staff may have been contaminated with asbestos), staff return to the dirty end, clean the coveralls with an asbestos-approved hoover (H-type), but still keep the respiratory equipment on until they have showered and the outer surface of the respiratory equipment has been cleaned. In some European Union Member States (e.g. the UK), workers clean their coveralls with H-type hoovers at the exit of the enclosure (or in the airlock closest to the enclosure), rather than in the dirty end of the decontamination unit.

                  All potentially contaminated materials that have either been discarded (coveralls in the dirty end of the decontamination unit) or used (towels or filters in the shower) must be bagged and disposed of as asbestos contaminated material.

                  Generally, there is a shower section between the "dirty end" and the "clean end".

                  In an improved arrangement, there is still an additional intermediate space and a second shower space. This ensures progressive decontamination and progressive discarding of protective equipment, thus enabling optimal protection of the

                  "clean end" from contamination. The provision of two showers also allows the first shower to be used to wash off the waterproof coveralls before they are removed, and then the second shower to be used for final washing after the protective clothing is removed. Respiratory protective equipment is worn until it has been washed in the second shower. Disposable underwear worn under the washable coveralls is discarded as contaminated waste for disposal. The washed washable coveralls are stored in the middle section.

                  In one EU Member State (France), decontamination in five sections is also recommended when using disposable coveralls, unless this cannot be realised on site.

                  As decontamination units are often mobile units, the facilities are usually very compact. However, it is important that adequate space and suitable facilities, e.g. benches, are available according to the number of workers to ensure proper use.

                  The decontamination unit should be equipped with a negative pressure vent. The pressure gradient should be from the "clean end" to the "dirty end". An air exchange rate of 30 per hour for the shower and dirty end is recommended, but some national guidelines accept less. The higher the air exchange rate, the lower the concentration of asbestos that may be released.

                   

                  12.4.2 Use of the decontamination unit

                   

                  Correct use of the decontamination unit is essential to prevent exposure risk. It is important that individual users are shown how to use it correctly and that they practice decontamination in their training (chapter 7.2.4). Figure 12.1 shows the use of a decontamination unit consisting of five sections and one consisting of three sections.

                   

                  If you employ or supervise people who carry out asbestos removal work, then you should ensure that:

                  • they have been adequately instructed in the use of the decontamination unit;
                  • contaminated disposable coveralls, towels and filters are packaged as asbestos-contaminated waste in the dirty end;
                  • the unit is kept in good condition, necessary items (shower gel, nail brushes, towels, hot water, etc.) are available and protection from the weather (e.g. freezing of the water supply) is provided.

                  If you are carrying out asbestos removal work, you should:

                  • have been instructed in the use of the decontamination unit;
                  • know how to prevent contamination from being transferred from the enclosure to the clean end; in addition, know how to correctly apply decontamination procedures, thereby preventing asbestos exposure during decontamination;
                  • Inform your supervisor immediately if the unit has a malfunction (e.g. pressure drop in the shower, no hot water, ventilation failure).

                  Figure 12.1 Decontamination of persons in a decontamination unit consisting of five and three chambers respectively.


                  Fig. 12.5 Decontamination with an H-type hoover in the shower with waterproof coverall, and subsequent showering before taking off respiratory equipment (these photos were kindly provided by INRS; copyright INRS).

                  14.4.3 Maintenance of the decontamination unit

                   

                  The decontamination unit should have a clearance certificate (confirming that the unit is no longer contaminated from previous use) before it is put into service on site.

                  The decontamination unit must be cleaned by a competent person wearing a clean coverall and respirator. Contaminated materials (towels, filters, coveralls, etc.) are to be bagged and collected - starting at the clean end - so that the contaminated material can be carried out at the dirty end.

                  The concentration of asbestos fibres in the air shall be monitored regularly in the sections where workers take off their respiratory protective equipment (Chapter 16).

                  The decontamination unit should be thoroughly cleaned after each shift. It should be routinely checked for asbestos dust contamination in the "dirty end" and at the end of the work a full clearance test should be carried out (similar to the test carried out inside the enclosure) before leaving the site or before dismantling work.

                  14.4.4 Transition from remote decontamination unit to enclosure

                   

                  If the decontamination unit cannot be directly coupled to the enclosure, ensure that no asbestos contamination originating from the enclosure is released during the transition of workers from the enclosure to the decontamination unit. The procedure for this transition is more appropriate for disposable coveralls than for washable coveralls.

                  Before entering the enclosure you should:

                  • use the decontamination unit (as described above) to remove street clothes and put on a disposable coverall (for use in the enclosure) under a transit coverall. The transit coveralls are a different colour from the coveralls worn in the enclosure. This makes them easier to identify by other people. Wear clean footwear for the route to the enclosure. Inspect and check the breathing equipment and align it correctly using the mirror.
                  • go to the enclosure
                  • take off the clean footwear and transit coverall in the outer chamber of the airlock for containment. Hang the coverall on a hook or place it in the containers provided in the first chamber. (Do not leave it on the floor!)
                  • Proceed to the second chamber of the airlock and put on the footwear for use in the enclosure
                  • through the inner chamber of the airlock into the enclosure

                  When you leave the enclosure, you should:

                  • Vacuum all visible dust from your personal protective equipment, respiratory equipment and footwear.
                  • enter the inner chamber of the airlock from the enclosure. Brush the footwear in the shoe bath. Rinse the respiratory equipment in a separate water bath with a sponge or wipe it wet.
                  • continue into the middle part of the airlock. Remove the coverall and footwear from the enclosure. Place the coverall in the waste bag as potentially asbestos-contaminated waste. (Or keep it for reuse if you take a rest break during the shift (e.g. high temperatures). Do not remove respiratory protective equipment.
                  • go further into the outer chamber and do not remove the transit coverall and footwear while doing so.
                  • proceed to the decontamination unit via the predetermined route (this route should be determined at an early stage, be short and direct and include as few hazardous points (e.g. stairs) as possible).
                  • enter the dirty end of the decontamination unit. Remove the footwear, personal protective equipment and underwear worn in the enclosure. Do not remove the respiratory equipment and keep its drive running.
                  • go to the shower area while continuing to wear the respiratory protective equipment. Take a shower and use a sponge to wipe the respiratory equipment with it Avoid water getting into the filter openings.
                  • remove the respiratory equipment after cleaning and shower it thoroughly. Remove the filter from the respiratory equipment and bag it for disposal as asbestos contaminated waste.
                  • dry themselves with a towel. Towels used before leaving the shower section must not be taken to the clean end (they should be left in the shower section or discarded as potentially contaminated). All towels used must be treated as potentially contaminated and disposed of accordingly or
                  • Finally, dry yourself again with another towel at the clean end.
                  • put on a transit overall (e.g. for a break) or your street clothes
                  • the decontamination unit via the outer door at the clean end


                  Fig. 12.6 Mobile decontamination unit

                  12.5 DUST SUPPRESSION TECHNIQUES

                  12.5.1 Basic

                   

                  When asbestos-containing materials are to be removed, dust suppression techniques must be used to prevent the asbestos fibres from becoming airborne. The technique for removing asbestos-containing materials must be chosen carefully and according to the situation. For example, wet removal techniques are generally a preferred method but are not suitable where live electrical or mechanical equipment is present. One European Union Member State recommends disconnecting all power from the external mains and then restoring it via an independent generator. If chemicals are present on site, the possible reactions of these chemicals with water must be considered. Wetting agents combined with water can make surfaces very slippery, increasing the risk of slips and falls, especially when working at height. The use of an antifreeze wetting agent is required in freezing conditions.

                  The equipment (used for dust suppression and control) must be of appropriate quality (e.g. it must comply with quality standards such as the PAS quality standard in the UK (British Standards Institution)), be in proper working order and be properly maintained.

                   

                  12.5.2 Moist removal

                   

                  Different application techniques are used to humidify materials containing asbestos: airless sprays to humidify the surface or for thin and porous materials and injection needles for thicker materials or materials with impervious surfaces. A wetting agent must be added to the water to effectively wet the asbestos.

                  The injection method is suitable for materials such as thermal insulation and sprayed-on coatings and is also suitable for other asbestos-containing materials with impermeable surfaces (e.g. painted asbestos insulation boards). The injection needles can be placed on a firm base (for flat surfaces) or on a flexible supply pipe.

                  (for curved or uneven surfaces) can be fixed. For inaccessible areas, a single-point injection (on a rod) may be necessary.

                  The injection should be carried out at low pressure (3.5 bar) so that the asbestos-containing material is moistened by capillary action. In this way, unnecessary spreading of the water is avoided. It is important to allow sufficient time for adequate wetting of the whole material. If the material still has dry spots, this can lead to significantly higher asbestos concentrations in the air at the workplace.

                  The size and design of the needles should be chosen according to the shape of the asbestos-containing material, e.g. long needles with holes along the long side for coatings/insulations more than 1 cm thick.

                  The needles must be properly aligned to ensure good surface coverage. The individual needles must be close enough to each other so that no dry spots can occur. Positioning should be such that the spread of water is supported by gravity (e.g. needles along the top on horizontal pipes; needles at intervals of approx. one metre in horizontal rings around vertical pipes).

                  If the coating/insulation has a hard surface that needs to be drilled into to allow injection of the needles, then dust suppression techniques, e.g. moistening by airless sprays, must be used for the drilling process; if moistened beforehand, the water can be absorbed.


                  Fig. 12.7 Asbestos insulation of the pipe shows several layers and the penetration of the wetting agent


                  Fig. 12.8 Diagram of the injection system: (1) tube, (2) insulating material,(3) injection needle supplied by a (4) flexible pipe.


                  Fig. 12.9 The injection system: Each needle has several openings from which water comes out. This illustration was provided by the UK HSE (HSG247). © Crown copyright material reproduced with permission of the controller of HMSO and Queen's Printer for Scotland.


                  Fig. 12.10 Example of a multi-point injection. This system is used for wetting sprayed asbestos.

                  Airless sprays (i.e. sprays that do not use air or propellant gas to carry the water) can be used to moisten the surfaces of porous materials (e.g. insulating foils, ropes, gaskets) and to prepare any materials before drilling so that the needles can be inserted for injection. Moistening with airless sprays can also be used on asbestos insulation boards (for removal under local ventilation) and on small fragments during cleaning.

                  Damaged coatings/insulation can easily break off when performing the injection. Such a damaged section can be wrapped with polythene film (or cling film and tape) to prevent the fragments from spreading.

                  It may be necessary, Metal sheaths on the asbestos-containing insulation to expose the insulation for injection. If the metal sheathing can be drilled into, the injection method should be used as described. If the sheathing can be removed without damaging the insulation, this is an easier method. In this case, dust release should be kept under control by using airless sprays and local extraction.

                  Even humidification is difficultif the material has internal cracks or varying porosity. If cracks are clearly visible, place the needles carefully to maximise the effectiveness of humidification. If the porosity is different, adjusting the flow rate may help. Wrapping the asbestos-containing materials may be necessary to retain the water and ensure complete humidification.

                  Large high-performance industrial heating systems can include the following problems:

                  • Extensive and complex pipe system; complete sealing of the enclosure is difficult or impossible
                  • large quantities of very thick (e.g. 1 m) asbestos insulation
                  • Large quantities of asbestos waste and sludge

                  Sufficiently moistened asbestos-containing materials have a dough-like consistency and can be removed in this form.

                  The removal of the moistened asbestos-containing materials is best done with hand-operated tools (e.g. scrapers, chisels, screwdrivers). No electric tools (such as cut-off grinders and sandpaper grinders) may be used to separate asbestos-containing materials!

                  Work must be carried out systematically: Removed materials should be bagged or wrapped immediately; work should be done from top to bottom to avoid re-contamination of clean surfaces (e.g. first the ceilings/beams, then the walls and finally the floor).

                  After removing most of the material, small residues may still remain on the surfaces. Sometimes the residues stick (e.g. to rough pipe surfaces). Hand-operated tools are preferable when removing asbestos residues, but power tools may be required for some highly adhesive residual materials. In these cases, they should be used at the lowest setting and with a dust suppression technique (foam, airless sprays or local exhaust ventilation).


                  Fig. 12.11 Bagging of asbestos waste directly at the removal site to prevent asbestos from spreading and to minimise asbestos exposure.

                  If you employ people to remove materials containing asbestos, then you should ensure effective supervision to ensure that:

                  • the safety precautions are followed;
                  • only the disposal methods specified in the work plan are used;
                  • the working methods are NOT changed unless this has been previously checked in the risk assessment and work plan;
                  • Asbestos removal work is carried out in accordance with best practice (as set out in this guide).

                  When you remove asbestos:

                  • decide on a work sequence that minimises the possibility of re-contamination of cleaned surfaces, e.g. first the ceilings/beams, then the walls and finally the
                  • make sure that the filters do not get wet, otherwise their filtering effect is impaired
                  • good organisation is very important. Remove waste as soon as it is generated. Wooden supports for asbestos ceilings often have nails in them. Make sure that these nails do not protrude so that someone can step on them.
                  • remove asbestos-containing materials in such a way that they are broken as little as possible in the process. For example, if an asbestos tile is attached with 4 nails, it should be removed intact - the corners with the nails should not be damaged The nails should be removed one at a time (with dust suppression as described in chapter 11).
                  • use ONLY the methods specified in the work plan

                  • DO NOT use power tools on asbestos-containing materials (except for special and restricted applications when this application is specified in the risk assessment and work plan).

                  If you are a labour inspector, you should check that the work has been implemented in accordance with the work plan, e.g. by:

                  • Observation of the work through the viewing windows;
                  • Check that the tools on site or in the enclosure comply with the work plan;
                  • Check that NO electrical tools are used

                  12.5.3 Controlled dry removal

                   

                  Moist removal is the best method and should always be used unless there are special circumstances. If moist stripping is not possible, the Controlled dry removal is an alternative. This means removal using other methods to control the release of dust, such as local ventilation or wrapping the insulated parts and cutting off and removing the entire section (known as "wrapping and cutting off").

                  The wrapping and cutting of thermally insulated pipe sections is possible if the pipe is to be disposed of together with the thermal insulation as asbestos waste. For this purpose, the thermally insulated pipe is wrapped with polyethylene film. It may be necessary to remove small and localised sections of the thermal insulation to allow the pipe to be cut away. Removing this section of thermal insulation means that there is a risk of asbestos exposure there and all work must therefore be carried out in an enclosure (see section 12.3.1 for exceptional cases where containment is not necessary). This technique is only suitable if the sections of the pipe are appropriately large and the contents of the pipes/containers have been drained.

                  Glove bagsmade of strong, clear plastic, have integrated, long, sleeved plastic gloves that allow an outside worker to handle the items inside. After securing the glove bag around the item to be removed, the worker can use tools by means of the bag to remove the asbestos. The material removed from the object is collected in the lower part of the glove bag. The bag should have a tight zip so that the waste can be enclosed in the lower part of the bag when the work is finished. The bag may only be used once and must then be disposed of with the waste. If possible, the glove bag should be used with a slight vacuum.

                  A procedure for removing the tools from the glove bag (e.g. after finishing the work) must be established. This can be done by placing the tools in one of the gloves, which is then pulled outwards, leaving the tools in the plastic glove that is pulled outwards. When the glove is knotted, the tools remain in a kind of plastic bag. A second knot in the glove creates a section that can be opened with minimal risk of asbestos release. The tool bag can be opened either in the nearest glove bag or in a bucket of water for cleaning.

                  The glove bag protects the worker but is not sufficient protection to override the requirement for personal protective equipment and respiratory equipment or the requirement for enclosure, as asbestos can escape from a bag if it is damaged.

                  Glove bags are commercially available in various designs.


                  Fig. 12.12 Glove bags for the controlled removal of asbestos cladding (These photos were kindly provided by INRS; copyright INRS).

                  Direct removal through vacuum systems represents a suitable and efficient method for removing loose asbestos (e.g. heat or sound insulation). The asbestos waste is fed to an off-site collection unit by means of a vacuum transport line. The necessary negative pressure is generated by equipment designed for this purpose.

                  If this pipe connects to a bagging unit that is outside the enclosure, then the bagging unit must have its own enclosure and workers at the bagging unit must wear full respiratory protective equipment and personal protective equipment and undergo full decontamination procedures (as for asbestos removal work).

                  If this type of equipment is used, the work plan should clearly indicate how blockages in the negative pressure transport pipe will be removed. For example, the pipe should be carefully plugged at both ends and pulled into the enclosure for the asbestos removal work where the blockage can be removed.

                  12.6 ENCAPSULATION AND ENCLOSURE

                  If it has been decided to secure some or all of the asbestos-containing materials by encapsulation or enclosure, then this process may involve a risk of disturbance to the asbestos-containing materials. Encapsulation can be achieved either by the

                  This can be achieved by applying a thin sealing coating, a thick sealing coating or by impregnating the asbestos-containing material with a hardening liquid. However, the initial wetting can already cause so much additional weight that the asbestos-containing material detaches and falls down. In the process, it causes dust. In general, the same precautions should be applied to the encapsulation of asbestos-containing materials as to the removal of asbestos.

                  Enclosure may mean enclosing the asbestos-containing material in a structure away from the asbestos-containing material. The risk assessment for this task should evaluate whether the work may cause disturbance to the asbestos-containing material. This will influence the decision as to whether the work should be notified and therefore carried out in accordance with the precautions described in this chapter, or whether the precautions set out in chapter 11 are sufficient.


                  Fig. 12.13 Carefully loosening an asbestos ceiling tile. This illustration was provided by the UK HSE.

                  12.7 INSPECTION, MONITORING AND MAINTENANCE OF THE ENCLOSURE

                  12.7.1 Systematic inspection and monitoring

                   

                  Scheduled monitoring and maintenance of the enclosure must be ensured. A trained person with relevant expertise can be designated as the responsible person. The monitoring system should specify the measures and frequency. Records of monitoring should be reviewed regularly by management.

                  Monitoring should include the following:

                  • Visual inspection the integrity of the enclosure
                    1. Before starting the work include checking the correct construction, seals, airlocks, connections and the effectiveness of the seals around "obstacles" such as pipes, ducts and cables.
                    2. Daily inspections before shifts should look for damage or malfunction of seals or joints and maintain sufficient negative pressure inside the polyethylene walls of the enclosure.

                  confirm. Regular visual inspections are the first step in preventing leaks.

                  • Smoke tests to detect potential leaks are to be carried out with the exhaust switched off. The purpose of this test is to identify places where leaks may occur (especially if the exhaust fails).
                  • A differential pressure of 5 Pascal is normally sufficient to prevent leakage to the outside. This small negative pressure and the readings can be affected by external influences (e.g. strong wind affecting the pressure in and around the building). One EU member state requires a minimum pressure of 10 pascals and recommends a pressure difference of 20 pascals.
                  • Measurements of the concentration of asbestos in the air should be carried out in the vicinity of the enclosure when work begins to confirm that no asbestos is present outside the enclosure These measurements should be repeated at specific intervals depending on how dangerous a leak might be. For example, if the enclosure is in a busy building and the surrounding areas are used, daily monitoring would be appropriate. However, if the enclosure is in an empty building, then monitoring at much longer intervals would also be sufficient. The risk assessment should consider the extent of exposure in the presence of a leak and determine the frequency of monitoring accordingly. In many situations, weekly monitoring is appropriate. Regular monitoring is a confirmation and assurance that no leak has occurred and can be very important, especially in critical situations (e.g. an enclosure near a school).
                  • The exhaust air system must be checked by a competent person before use and at regular intervals. The pre-filter can be replaced if it is clogged. However, a clogged pre-filter is also an indication that dust suppression is not working as intended It is important to ensure that the filter is installed correctly. The exhaust system must be serviced regularly (every six months) by a competent person. If the high efficiency filter has been installed correctly and is working to specification, then no asbestos dust should be released. Occasional air tests near the air outlet are nevertheless useful (e.g. if the high-efficiency filter has just been changed). Immediately after changing the high-efficiency filter, test the filter performance of the exhaust to ensure that the filter has been correctly installed with effective seals. (Filter performance can be tested with a safe replacement aerosol e.g. dioctyl phthalate (DOP); this test is normally carried out by a subcontractor when servicing this equipment).

                  12.8 WASTE DISPOSAL


                  12.8.1 Removal of packaged waste from the enclosure

                   

                  For waste containing asbestos, use bags that are colour coded and labelled as asbestos waste in accordance with national legislation on asbestos waste. Waste bags should NOT be filled COMPLETELY and the contents should be

                  be damp. Carefully close the bags to prevent air from escaping and then seal them.

                  Bagged or wrapped waste is removed from the enclosure through an airlock separate from the personnel airlock. The airlock for the waste is often called a "baglock" and usually consists of three chambers.

                  The sealed waste bags (or wrapped items) are rinsed (with a hand shower) and wiped damp in the inner chamber of the three-chamber airlock. The cleaned bags are placed in the middle chamber of the airlock and stowed in another transparent bag, which is then sealed. The double-bagged waste is placed in the outer chamber of the airlock. The waste is taken out of the outer chamber by workers outside the chamber wearing appropriate respiratory protective equipment (approved for asbestos work) and taken directly to the secure waste storage area (e.g. lockable waste container).

                  Care must be taken to ensure that the frame of the bag lock does not have sharp corners or points, as sharp edges can damage the bags (or wrappings) containing the waste.

                   12.8.2   Preventing a spill

                   

                  The packaged waste that is brought out of the enclosure must be stored securely from accidental or intentional damage. Once the waste has left the bag lock, the packaged waste should:

                  • never be left unattended until safely encapsulated
                  • be taken by the shortest route to a secure storage location (e.g. lockable waste container or lockable vehicle) and the route must be clearly defined (so that it can be inspected after completion of the work)

                  Care must be taken not to tear or damage the bags:

                  • Do not overfill bags
                  • Waste container must not contain sharp objects
                  • The packaged waste must not be handled carelessly (e.g. do not throw the bags into the rubbish container).

                  12.8.3   Use of personal protective equipment during waste disposal

                   

                  As in section 12.3.3 described, a worker standing outside the enclosure can remove the wrapped waste from the bag lock and move it to a safe storage location. This worker should wear appropriate personal protective equipment and respiratory protective equipment as specified in the risk assessment and work plan.

                  12.9 CLEANING AND COMPLETION OF THE WORK

                  All equipment and the entire work area must be kept clean while the work is being carried out. In doing so, waste containing asbestos must be bagged as soon as it is generated. The work areas must be cleaned after each shift and

                  clean up. Cleaning methods should not create dust. H-type hoovers approved for asbestos work should be used to suck up dust. The appropriate attachments for the respective surfaces should be used.

                  Broken pieces should be moistened before collection. Shovels and rakes can be used for the broken pieces (brooms are not suitable for this). Damp rags or cloths can be used to clean surfaces. When doing so, the wiping water must be changed regularly to avoid contamination over the entire surface. When surfaces have been wiped, they must dry before being subjected to the final test.

                  The H-type hoover should not be used to collect the damp material as the moisture destroys the high-performance filters that prevent the fibres from being released.

                  After all the asbestos has been removed and after all the asbestos waste and tools and equipment have been taken out of the enclosure, a final cleaning of the enclosed area should be carried out. The surfaces should be vacuumed beforehand with an H-type hoover and then wiped with damp rags and wipes.

                  Afterwards, all tarpaulins and panels that have been used to cover the plant, equipment, floors or other surfaces can be cleaned. These tarpaulins and panels (but really only these tarpaulins and panels) should be sprayed with a sealant to prevent dust from being released when these parts are moved.

                  All equipment used in the asbestos abatement work should be cleaned before it can be brought out of the enclosure. If possible, equipment such as scaffold panels or the platforms of mobile lifts should have been protected (e.g. with thin sheets, polythene sheeting) before being brought into the enclosure. These tarpaulins and sheets may be sprayed with a sealant and should be disposed of as asbestos-contaminated waste. All surfaces that are not fully protected must be cleaned with an H-type hoover and clean water. Contaminated water must be disposed of through a water filtration system.

                  Finally, the contractor must carry out a thorough inspection to ensure that all asbestos-containing materials to be removed have been removed and the work area has been cleaned of visible fragments and fine, settled dust. The only items remaining in the enclosure at this stage are the wrapped waste that could not be brought outside through the bag lock, an H-type hoover, devices to access higher areas in the enclosure, and cloths and waste bags for additional cleaning, which may be ordered by an independent expert carrying out an asbestos test (see Chapter 16).

                  In some Member States of the European Union (UK and Ireland), the independent surveyor carries out a 4-step procedure to assess whether the asbestos work has been satisfactorily carried out before the premises can be re-occupied:

                  1. A preliminary check of the condition of the construction site and the completeness of the work, comparing the work carried out with the details in the

                  work plan are compared and the condition of the transport routes and the areas around the enclosure are inspected for signs of contamination

                  1. A thorough visual inspection inside the enclosure to ensure that the asbestos-containing materials have been removed, the surfaces are clean and any on site remaining asbestos-containing materials comply with the work plan
                  1. Air monitoring in the enclosure to ensure that the concentration of asbestos in the air remains below a specified limit (0.01 fibres/ml as measured by phase-contrast light microscope).
                  1. A final assessment, which shall include a thorough visual inspection after dismantling and removal of the enclosure This final assessment shall ensure that all fragments exposed during the dismantling of the enclosure have been properly removed.

                  Procedures in individual Member States of the European Union may include the Expert issuing a document or certificate setting out the results of each stage. The contractor may be required to countersign the document.

                  When the above procedure has been satisfactorily completed, the surveyor will also carry out an examination of the decontamination unit before it is removed from the site. The examination will include a visual inspection in all sections and an air check in the shower and in the section where contaminated items were left.

                  Detailed guidelines for experts carrying out these procedures have been published by the UK Health and Safety Executive (2005) in the HSG248 guidance document.

                  In some Member States of the European Union, an air test by means of an electron microscope is required after the completion of the asbestos removal work (see chapter 16.2 : description of the meaning of the different measurement methods).

                  If you are a labour inspector, you should check that:

                  • the work has been reported in accordance with the legal requirements
                  • the work plan is available, that it is understandable and that it includes the recommendations made at this point
                  • a training and refresher course have been implemented
                  • good labour practices are promoted
                  • the scope of the work corresponds to the work specified in the work plan
                  • the workers' personal details and photographs match the medical and training records
                  • good site management and monitoring procedures are in place.

                  You should also check that:

                  • everyone on the site has a correct version of the work plan that they can understand (e.g. if one of the workers does not speak the local language, find out if this worker has been provided with an output in a language he can understand. He should also have a means of communication with his supervisor that is sufficient for enquiries relating to his tasks under the plan).
                  • practical procedures are used to minimise the release of dust and prevent exposure to asbestos and the spread of contamination. For example, any asbestos insulation board that has been removed should be intact and all screw holes (visible through the wrap) should be in a condition that indicates careful removal of screws

                  Also consider the practical checks described in section 11.2.2 are described (e.g. on materials containing asbestos, which are to be removed as intact as possible).

                  If the best practices are not applied in a project or on a construction site, give clear instructions regarding the necessary measures and recommendations. If failure to apply the best practices results in significant exposure of workers or others to asbestos, the safest course of action is to stop the work.

                    13 DEMOLITION WORK

                    Demolition work is covered by the Council Directive on the minimum safety and health requirements for mobile construction sites (92/57/EEC). This Directive requires that due account be taken of health, safety and public welfare when setting up a construction site.

                    This guide focuses on the prevention of the risks of exposure to asbestos and therefore does not attempt to cover the requirements arising from the general requirements of the Mobile Construction Sites Directive. However, those involved in the management of demolition work should have knowledge of the requirements associated with this guideline.

                    European Directive 83/477/EEC, as last amended by Directive 2003/18/EC, states the following: "Before carrying out demolition or asbestos removal work, undertakings must demonstrate their relevant expertise. This evidence shall be provided in accordance with national law and/or practice."

                    The directive also requires that before demolition work begins: "employers, after obtaining appropriate information from the owner where necessary, take the appropriate precautions to identify materials likely to contain asbestos. If there is reason to believe that a material or building contains asbestos, then the relevant provisions of this Directive shall be followed." These regulations include that: "the asbestos and/or asbestos-containing materials are removed before the demolition techniques are applied, except in cases where such removal would cause a greater risk to workers than if the asbestos and/or asbestos-containing materials were left in place."

                    When demolition work is carried out that may involve asbestos-containing materials, the following key points must be observed:

                    • Who can be harmed by the work?
                    • How will we separate the work?
                    • What control measures will we use?
                    • Can asbestos removal work and demolition work be carried out side by side?
                    • How are the contractor's workers carrying out asbestos removal work protected from the risks involved in demolition work?
                    • How are the contractor's workers carrying out demolition work protected from the risks involved in asbestos removal work?

                    The implementation of the demolition work should include the following steps:

                    • Determine where asbestos-containing materials are present at the demolition site by means of asbestos surveys, inspections and/or review of existing information in relation to the site.
                    • Accessible asbestos-containing material before demolition work begins
                    • In areas where no asbestos-containing materials could be determined, allow demolition preparations to continue, i.e. remove elements not belonging to the structure and not containing asbestos, suspended floors, partitions, flooring, etc.
                      1. During this work, voids are exposed, B. cable and mechanical penetrations. These networks should be traced to ensure that all connections to other structures not intended for demolition have been severed, e.g. a pipeline that runs across several buildings but not all of which are intended for demolition.
                      2. Re-check these areas now for asbestos-containing materials not previously found If asbestos-containing materials are found, stop demolition work. These materials must be removed by an asbestos contractor.
                    • Prior to demolition work, identify those locations that have inaccessible asbestos-containing materials or where asbestos-containing materials cannot be safely removed, B. asbestos-containing materials that either form or insulate structural elements.
                    • Develop a strategy regarding the type and timing of removal of these asbestos-containing materials, B. When removing the asbestos-containing boarding, it may be necessary to remove the concrete slabs. This could be done within an enclosed work area with properly trained personnel wearing proper respiratory equipment. It is not always practical to erect an enclosure in these circumstances.
                    • Training to increase "asbestos awareness" for those involved in demolition work If asbestos-containing materials are unexpectedly found, a safe system of work should be established to ensure removal of the asbestos-containing materials with the least possible exposure for those working nearby.

                    Different techniques can be used for the demolition work:

                    • Disassembly - This should consist of taking the structure apart in reverse order to assembly. The non-structural material (e.g. asbestos cement wall cladding and roof panels) is normally dismantled first Then the structural frame is dismantled. This is done either by manual unscrewing or using a flame cutter and lifting and access equipment (e.g. scaffolding or mobile lifting platform).
                    • Through machines - Large machines equipped with various special tools can carry out a range of demolition tasks. Machines equipped with hydraulic shears can carefully cut previously inaccessible beams out of the structure. These machines can lift beams that have a layer of asbestos insulation to the ground, where the removal of the asbestos insulation can be carried out under controlled conditions. Demolition by machine is often preferred because the people involved in the work are at a safe distance from the building structure during demolition. Large brick or stone buildings can be toppled by specialised machinery Asbestos-containing waste can be handled on the ground under controlled conditions, avoiding the hazards of working at height.
                    • Demolition from a distance using wrecking balls or similar equipment

                    These methods are used when demolishing hazardous structures. They protect the safety of workers involved in the demolition work. Nevertheless, the risk assessment should indicate the expected level of asbestos exposure and methods to control and reduce it.

                    • Demolition from a distance using explosives

                    Blasting is more difficult to control (in terms of the spread of contamination) and is thus only a last resort for the demolition of hazardous structures. The use of explosives in the demolition of buildings is nevertheless steadily increasing. This method has the advantage that no personnel are in the building when the explosives detonate. However, large amounts of dust are generated, so all asbestos-containing materials should be removed beforehand, unless the risk assessment indicates that some materials must remain in place.

                    All of the above techniques can be used for fire-damaged structures.

                    All asbestos removal work as part of a demolition project should be treated as either low-risk or reportable work, depending on the outcome of the risk assessment, and the appropriate precautions should be applied. Demolition work is by no means less demanding than other asbestos removal work.

                    In some cases, the demolition of a building involves the removal of electrical switchgear, transformers, etc. Due to the value of scrap materials, these pieces of equipment should be removed intact and transported to another location for further processing. Components of electrical switchgear may contain asbestos. Therefore, persons involved in the dismantling of this equipment should be aware of the possible presence of asbestos-containing materials, be able to recognise them and use best practices to minimise exposure to asbestos dust.

                    If you employ people for demolition work where materials containing asbestos may be present, you should ensure that:

                    • there is effective coordination between the various activities on the site; in particular, you should ensure that the demolition work does not endanger the workers carrying out the asbestos removal work and vice versa;
                    • the asbestos abatement works use best practice (as described in this guide);
                    • all workers have adequate training (so that demolition workers can identify materials likely to contain asbestos and know what to do);
                    • asbestos-containing materials exposed during demolition work are removed and disposed of as asbestos-contaminated waste.

                    If you are working on a demolition site where materials containing asbestos are present, you should:

                    • be aware of the risks of exposure to asbestos;
                    • know how to recognise materials containing asbestos;
                    • Understand the procedures to prevent you from being put at risk by the demolition work;
                    • Apply best practice in asbestos work as described in this guide.

                    If you are a labour inspector, you should:

                    • Verify that an effective system for coordinating demolition and asbestos abatement work is in place;
                    • verify that the demolition workers:
                      1. have been informed about and understood the asbestos risks
                      2. have been trained in asbestos-containing materials and their detection
                    • verify that the asbestos abatement works use the best practices (as outlined in Chapter 12);
                    • Verify that the relevant national legislation is complied with.

                    14    THE EMPLOYEE AND THE WORKING ENVIRONMENT

                    14.1 INTRODUCTION

                    Difficulties in adequately protecting workers from the risk of asbestos exposure may increase if working conditions are further complicated by other factors, such as extreme temperatures. High temperatures can occur when working on hot equipment or in enclosures heated by direct sunlight. Low temperatures occur in unheated areas in cold weather or in cold climates.

                    In addition, the use of sealed or non-permeable coveralls can also reduce the body's heat dissipation. This can lead to overheating-related illnesses in connection with strenuous work even in relatively temperate climates. If a humid atmosphere is created by the use of water for moist ablation, this can limit the body's normal heat dissipation via perspiration. Warm environmental conditions may encourage workers to remove clothing, reducing the effectiveness of protection against asbestos contamination.

                    The disposable coveralls used in asbestos removal provide comparatively little protection against cold. Considerable metabolic heat can be generated during the physically strenuous work of removing asbestos-containing materials. In contrast, the less physically demanding cleaning operations end up generating little metabolic heat, which means that cold-related problems are the main concern.

                    14.2 THE EMPLOYEE

                    A worker's physical condition can affect their ability to work safely in these environments.

                    Workers' ability to wear and use respiratory protective equipment may be affected by changes in personal factors. For example, stubble or weight loss may affect the facial fit of the respirator.

                    In the case of a pregnant worker, it is also important to weigh up how pregnancy affects the particular problems of carrying out asbestos work: the face fit of respiratory equipment and physical fitness to deal with these temperature extremes.

                    14.3   THE NATURE OF THE WORK

                    Musculoskeletal disorders are the most common cause of sick leave at work in the EU. Handling heavy loads is often the cause of work-related back pain. Compliance with the provisions of the EC Directive on Manual Handling of Loads (90/269/EEC) should help to minimise these risks when carrying out asbestos-related work. Working in awkward positions (e.g. bent or twisted) can cause back pain and is a major problem when working in cold environments.

                    Three factors - force, position and repetition - can lead to upper limb discomfort and injury. The risk in this regard is increased by, among other things, unsuitable tools, repetitive work with bending and extension of the wrists and excessive work with raised arms.

                    Discomfort or musculoskeletal problems may be a cause of a worker not correctly attaching their respiratory equipment to their face.

                    14.4 THE WORKING ENVIRONMENT

                    14.4.1 Warm ambient conditions

                     

                    The adverse health effects of working in warm ambient conditions may include:

                    • Burns due to contact with hot surfaces or radiating heat
                    • External effects: Swelling of the feet and ankles, sweat blisters
                    • Fainting due to a drop in blood pressure to the brain (this can have serious implications if the affected person is kept in an upright position) and obvious hazards from falling, as well as difficulty in assisting an unconscious worker with a respirator
                    • Muscle cramps, nausea and vomiting due to salt loss from excessive sweating.
                    • Heat exhaustion caused by dehydration due to excessive sweat loss. Symptoms include fatigue, dizziness, nausea, headache, breathing problems, extreme thirst, muscle cramps.
                    • Heat stroke, an acute and potentially fatal condition caused by a rise in core body temperature above 40°C. This condition can occur suddenly and without warning or is heralded by headache, dizziness, confusion, weakness, restlessness or vomiting.

                    The measures to be taken to reduce risks in warm ambient conditions include the following:

                    • Minimise heat sources (e.g. switch off hot equipment as often as possible).
                    • Restriction of heat conduction and heat radiation (e.g. thermal insulation of hot surfaces, heat radiation shields for heat reflection).
                    • Higher air exchange rates (e.g. stronger general ventilation or local exhaust ventilation).
                    • Cooling (e.g. fresh outside air, compressed air or air conditioning)
                    • Local cooling with free-standing fans (make sure that no dust is stirred up by this).
                    • Workplace rotation and regular breaks in a cooler area
                    • Prevent dehydration by drinking water regularly before work, during rest breaks and after work.
                    • Training in heat stress awareness, related symptoms, safe working practices and emergency procedures.
                    • Monitoring workers' temperatures and state of health (e.g. measuring core body temperature) with the involvement of

                    Two European standards (EN 27243 and EN ISO 7933) can assist in carrying out a risk assessment for the effects of warm ambient conditions. EN 27243 is easier to apply, but does not include a provision that considers clothing, personal protective equipment or respiratory protective equipment. EN ISO 7933 includes the effects of covering the skin, but not the effects of permeability of clothing. British Standard BS 7963 gives guidance on adjustments needed to take account of the effects of personal protective equipment on thermal balance.

                    14.4.2 Cold ambient conditions

                    For work in cold environments, ISO/TR 11079 provides guidance on the thermal insulation required for clothing and ISO 9920 provides an estimate of the temperature characteristics of clothing. Reportable work on asbestos-containing materials in cold environmental conditions may require the provision of disposable underwear to be worn under the disposable coverall or washable coverall.

                    Exposure to cold temperatures without adequate protection can lead to hypothermia. Hypothermia is the lowering of the core body temperature to a level where the functions of the muscles and brain are impaired. Mild hypothermia (core body temperature between 37°C and 35°C) causes mild shivering that is not self-controlled, interferes with complex movements (but not walking or talking) and reduces blood flow to the body surface (causing vasoconstriction). Moderate hypothermia (core body temperature between 35°C and 34

                    °C) causes drowsiness, loss of fine motor skills (especially in the hands), slurred speech, irrational behaviour and an indifferent attitude. These symptoms may also contribute to a failure to use tools or protective equipment correctly, increasing the risk of exposure when working with asbestos.

                    Severe hypothermia can quickly lead to death.

                    If you employ people whose work may involve exposure to asbestos under the conditions described in this chapter, you should:

                    • monitor the condition of workers and have a system in place to ensure that the safety of workers is not compromised (e.g. due to a reduction in the effectiveness of respiratory equipment because workers have stubble, or by reassessing the selected respiratory equipment if there is a significant change in the physical condition of a worker)
                    • Consider the practical problems involved in reducing the risks that lead to musculoskeletal disorders or that prevent the proper use of respiratory equipment
                    • Introduce effective systems to maintain acceptable temperatures in the workplace.

                       can be generated, such as:

                      • Cooling/heating
                      • Thermal insulation from hot elements
                      • appropriate protective clothing
                      • extra ventilation
                      • Work routine that includes adequate breaks
                    • provide for adequate workplace supervision to check on the welfare of workers.

                    If your work involves possible exposure to asbestos and physically strenuous working conditions (due to the temperature or the physical effort required in the work), you should:

                    • Be aware of the importance of maintaining protection against exposure to asbestos.
                    • Be aware of the effects of warm environmental conditions and use the equipment provided to protect against these conditions (thermal insulation, protective clothing, extra ventilation, regular breaks, drinking water during breaks and before work).
                    • Use the protective equipment provided to protect against cold environmental conditions (heaters, if appropriate; thermal protective clothing; breaks, if required ).
                    • always use the best practices as indicated in this guide to protect yourself from the risk of asbestos exposure.

                    If you are a labour inspector, you should:

                    • Check whether effective measures have been introduced to reduce the heat load
                    • Consider whether working conditions may interfere with the effective use of respiratory protective equipment.
                    • check whether the relevant national legislation has been complied with.

                    15 WASTE DISPOSAL

                    15.1 INTRODUCTION

                    The Directive on the protection of workers against asbestos (83/477/EEC, as last amended by Directive 2003/18/EC), requires in Article 6, ....the exposure of workers to dust arising from asbestos or materials containing asbestos at the place of work shall be reduced to a minimum ..., in particular by the following measures " (regarding transport and disposal of the waste):

                    • "Asbestos, asbestos dust releasing or asbestos containing material shall be stored and transported in suitable closed containers.
                    • Waste shall be collected and removed from the workplace as soon as possible in suitable closed containers labelled to indicate that the contents contain asbestos ... ...Such waste shall be managed in accordance with Council Directive 91/689/EEC of December 1991 on hazardous waste."

                    According to the Waste Framework Directive, Member States of the European Union must support the prevention or reduction of waste and the resulting hazards by promoting the development of clean technologies, technical improvements to products and new disposal technologies. In addition, they must prohibit uncontrolled disposal. An adequate network of disposal facilities must be established in cooperation with the other Member States. The best available technology must be used, which should also not incur excessive costs.

                    15.2 PROBLEMS

                    The packaged waste containing asbestos shall be labelled as waste containing asbestos in accordance with European Directive 1983/478/EEC of 19 September 1983.

                    Once the packaged waste has been collected in secure storage facilities (e.g. lockable containers) at the construction site, it must be transported safely to an approved waste disposal site. Transport must be in accordance with national regulations on the transport of dangerous goods. They may include requirements relating to securing the load, marking of the vehicle, prior written agreement with the authorised waste site, emergency procedures for dealing with spills (e.g. wrapped waste inside the container), training of the driver and a person with relevant expertise in the transport of dangerous goods.

                    Asbestos in the EU is currently disposed of in landfills or vitrification plants. In some Member States of the European Union, civil engineering pits can be used for the disposal of asbestos waste.

                    Controlled landfills/pits

                    The asbestos is buried at these disposal facilities. The records kept by the disposal facility make it possible to trace the material from its source to its position in the facility. In some Member States, the waste is sealed with concrete, for example.

                    A risk assessment of the potential exposure of workers at the facility involved in the transport or storage of the bagged waste shall be carried out and regularly verified by personal sampling. Workers shall be protected from the risk of exposure (e.g. due to damage to the bagged or wrapped waste during transport or storage) by taking appropriate protective measures (e.g. provision of high efficiency particulate filters for vehicle cab air conditioning and the use of appropriate respiratory equipment, protective clothing and changing facilities or decontamination facilities approved for use with asbestos).

                    Glazing

                    Vitrification takes place in a facility where the asbestos waste is treated at high temperatures and transformed by chemical alteration into a vitrified, inert end product that can be used as aggregate for road construction or other suitable applications. This process is considered an effective way to eliminate the risk of asbestos exposure from the final product. However, vitrification requires much more energy than the other processes.

                    15.3 RECORDING OF THE TRANSPORT

                    Directive 84/631/EEC requires the use of a detailed consignment note setting out in detail the source and composition of the waste, the transport route, the measures taken to ensure safe transport and the existence of a formal agreement with the consignee of the waste.

                    15.4   WHAT YOU SHOULD DO

                    If you employ people whose work involves the disposal of asbestos-containing waste, you should:

                    • Carry out a risk assessment (as described in chapter 5 described) to assess their likely exposure as well as the potential exposure of others from the work;
                    • provide written instructions for working methods that reduce workers' exposure to airborne asbestos fibres;
                    • Use the best practices (as defined in this guide);
                    • ensure that workers are adequately trained and informed about the risks;
                    • ensure adequate monitoring of the concentration of airborne asbestos fibres to determine the level of exposure for workers and other persons;
                    • keep records of the asbestos disposed of (e.g. position of waste in landfills);
                    • ensure that workers are provided with and properly use appropriate personal protective equipment (e.g. respiratory protective equipment and coveralls if required by the results of the risk assessment);
                    • the national legislation relating to asbestos work

                    If your work involves handling waste containing asbestos, you should:

                    • be aware of the risks of exposure to asbestos because of your training;
                    • know how important it is to keep exposure as low as possible;
                    • follow the written instructions that minimise the risk of exposure to asbestos;
                    • Use the best practices for working with asbestos as described in this guide.

                    If you are a labour inspector, you should:

                    • make sure that an adequate risk assessment is in place;
                    • ensure that adequate written working methods are in place to avoid or reduce the risk of exposure to asbestos;
                    • ensure that documentation is available on the results of monitoring workers' exposure to asbestos;
                    • verify compliance with the national provisions in this respect.

                    16: MONITORING AND MEASUREMENTS

                    16.1 INTRODUCTION

                    This chapter describes the monitoring and measurement of air concentrations; these should be carried out by a person with relevant expertise or a specialist company. The explanations are intended to

                    • Assist the employer in providing adequate air monitoring.
                    • Help the employer, the worker and the supervisor to understand the different objectives of air monitoring.
                    • help explain what the measurement results mean
                    • highlight, which involves air sampling and measuring the concentration of airborne asbestos fibres
                    • show how different measurement techniques (when determining the number of fibres in the sample) affect the data found

                    16.2 INDOOR AIR SAMPLING AND SAMPLE ANALYSIS METHODS

                    In room air sampling, a measured volume of air is passed through a filter that filters out the airborne fibres. The filter is then examined under the microscope to determine the number of fibres. Thus, the concentration of the fibres in the air can be determined.

                    The European Directive on the protection of workers from the risks related to exposure to asbestos (83/477/EEC, last supplemented by Directive 2003/18/EC) specifies that sampling must be carried out by suitably qualified personnel and that samples must be analysed in laboratories equipped for fibre counting. It further specifies that the filter must then be analysed by a method published by the World Health Organisation (1997), i.e. by counting the fibres under a phase-contrast light microscope or by another method giving equivalent results. The phase-contrast light microscope method is used in most EU Member States. 

                    Other types of microscopes can also be used for filter analysis. Electron microscopes offer higher magnification (i.e. more fibres with very small diameters can be detected that would not be visible under a light microscope), and they can distinguish asbestos fibres from other fibres (e.g. organic fibres or synthetic fibres). Therefore, counts from different types of microscopes may also give different estimates of concentration. There are two types of electron microscopes - the scanning electron microscope and the transmission electron microscope.

                    Each microscopy method has specific advantages. A light microscope can always be transported ready for use and used on site to quickly ezielen results. This is particularly advantageous when the results are needed immediately, e.g. when checking the enclosure for leaks. However, phase-contrast light microscopes have the disadvantage that all fibres, including non-asbestos fibres, are counted and therefore the concentration of all fibres (not only asbestos fibres) is determined.

                    Electron microscopes offer higher magnification and better resolution; they therefore detect thinner fibres that are not visible under a phase-contrast light microscope. The concentrations measured by an electron microscope can therefore be higher than those measured by a light microscope.

                    The scanning electron microscope distinguishes between asbestos fibres and non-asbestos fibres by determining the chemical composition of the fibres. This can help detect lower concentrations after asbestos removal work has been completed if other types of fibres (e.g. organic fibres) are also present in the air there.

                    The transmission electron microscope can determine what type of asbestos a fibre is made of (amosite, crocidolite, chrysotile, etc.) by determining the chemical composition and crystalline structure of the fibre. The transmission electron microscope has the highest magnification for observing the smallest fibres. However, this method of analysis is the most expensive and time-consuming. It also involves a difficult and time-consuming technique for preparing the sample.

                    In one Member State of the European Union, it is necessary to have measurements carried out with a transmission electron microscope to confirm that concentrations below 0,005 fibres/cm3 lie. This is done as part of the tests to confirm that a building can be re-occupied (INRS ED815). Another Member State requires measurements with a scanning electron microscope. Several Member States require measurements with a phase contrast light microscope (e.g. to confirm that concentrations are below 0.01 fibres/cm3 used as part of the tests confirming the successful completion of the asbestos removal work.

                    16.3 AIR MONITORING OBJECTIVES

                    The stationary air sampling can be used to determine the ambient fibre concentration when there is no active asbestos exposure, e.g. before work begins. This is also used when handling the asbestos-containing materials that remain on site.

                    The personal surveillance measures the concentration of fibres in the breathing zone of workers. This measurement provides a basis for checking whether the protection factor of the personal respiratory protective equipment is appropriate.

                    The European Directive on the protection of workers from the risks related to exposure to asbestos (83/477/EEC, last amended by Directive 2003/18/EC), states:

                    1. "The employer must be informed of the employees who have (reportable activities listed in section 6.3) The doctor and/or the competent authority responsible for medical surveillance shall have access to this register. Each worker shall have access to the information concerning him/her contained in this register. Workers and/or their representatives in the undertaking or establishment must have the possibility of consulting non-personal general information contained in this register.
                    2. The registers referred to in point 1 and the personal health records referred to in point 1 of Article 15 (see chapter 19) are after the end of the

                    exposure in accordance with national legislation and/or practice for at least 40 years.

                    1. The documents referred to in point 2 shall, in accordance with national law and/or practice, be made available to the competent authority upon closure of the undertaking or establishment.

                    Regular monitoring can also identify workers whose work methods are causing abnormal asbestos fibre concentrations and thus help identify areas where work methods need to be improved.

                    Sometimes samples are also taken in the general work area. These samples, together with personal monitoring, help to determine the concentration of asbestos fibres in the air where work is being carried out.

                    Monitoring the working environment should include measuring the concentration of airborne asbestos fibres in the areas where there is a possibility of workers being exposed if they are not wearing personal respiratory protective equipment. One European Union Member State sets the measurement at twice a week in the department where workers remove their respirators (INRS ED815).

                    Checking for leaks can be carried out during asbestos work if an enclosure is available. It is a secondary measure to the visual inspection and smoke tests on the enclosure. This test is used when weak points are suspected on the enclosure or when "sensitive" areas (e.g. used areas) are present nearby. Monitoring tests for elevated fibre concentrations that may be related to a release from the enclosure. Background testing prior to commencing work is useful as it allows a determination to be made as to whether a leak test measurement reflects a release or merely a background concentration.

                    Checking for leaks may be required in particular if there are objects such as cables, pipes, ascending pipes running through the enclosure. The planning should include a buffer zone between the people involved in the asbestos work and other people in the building. Checking for leaks should be carried out in this buffer zone.

                    Checking for leaks should be carried out more frequently at the "high risk" times of the job (e.g. at the start, at the times of greatest asbestos exposure, and at the exposure times at the weak points of the enclosure). If sufficient monitoring confirms a sealed and ducted enclosure, such tests can be reduced accordingly or discontinued altogether.

                    The purity monitoring is carried out together with the visual assessment of the cleanliness and integrity of the enclosure system. National regulations and practices may require cleanliness monitoring after asbestos removal before the site is released for either normal use or demolition or remediation.

                    16.4 SELECTION OF A MONITORING ORGANISATION

                    Laboratories certified to ISO/IEC 17025 have the required quality systems in place. The laboratories should also participate in an external proficiency testing scheme.

                    for fibre determinations (e.g. the national schemes in the UK (RICE), Spain (PICC-FA), Belgium, France) or participate in an international scheme (such as AFRICA).

                    16.5 WHAT YOU SHOULD DO

                    If you employ or supervise people who remove asbestos, you should:

                    • ensure that the tests (personal exposure monitoring, cleanliness test, etc.) are carried out by a competent and accredited person or organisation;
                    • ensure that the monitoring of airborne fibres, where necessary, is carried out by a person or organisation independent of the contractor carrying out the asbestos work;
                    • provide the monitoring organisation with the work plan before the workers carrying out the work arrive at the construction site;
                    • have implemented a monitoring strategy appropriate to the nature, scale, location and complexity of the asbestos work;
                    • keep a register of workers carrying out reportable work, recording their activities and the exposures to which they have been subjected, keep this register for at least 40 years and make it accessible in the following way:
                      • the competent state authorities and the doctor responsible for the medical examination
                      • the individual workers who wish to have access to records on their own exposure
                      • the representatives of the employees with regard to non-personal information
                    • ensure that personal exposure monitoring is carried out regularly in accordance with national requirements and that records are kept for at least 40 years;
                    • Respond immediately to results issued by the monitoring organisation.

                    If you are carrying out work to remove asbestos, you should:

                    • cooperate with your employer and the chosen monitoring organisation by wearing a personal sampling device and ensuring that its functioning is not impaired, and maintain your usual working practices during the sampling period;
                    • provide accurate information about your work and methods during personal sampling;
                    • assist the monitoring organisation in determining weak points in the enclosure during the leak tests;
                    • assist the monitoring organisation to carry out a thorough visual inspection of the enclosure as part of the asbestos inspection, B. when using ancillary equipment, etc.
                    • Do not move, adjust or otherwise handle the air monitoring instruments;
                    • Follow the instructions of your employer/site supervisor and take immediate corrective action if the monitoring organisation detects an elevated concentration of fibres in or around the work area.

                    If you are a labour inspector, you should:

                    • seek evidence that monitoring is adequate for the nature, scale, location and complexity of the asbestos work;
                    • ensure that mandatory testing is carried out by a competent and, where necessary, independent organisation or person;
                    • specify that regular personal monitoring is carried out and that records are kept for at least 40 years;
                    • review the inventory of workers' activities and exposure (e.g. ensure that it is realistic and appropriate);
                    • review the results of the air monitoring tests to determine whether action has been taken in the situations where elevated fibre concentrations have been detected.

                    16.6 INFORMATION

                    The European Directive on the protection of workers from the risks related to exposure to asbestos (83/477/EEC, supplemented by Directive 2003/18/EC) requires that:

                    • measures are taken to enable workers and/or their representatives to consult the results of measurements of airborne concentrations of asbestos and to obtain an explanation of the results
                    • if the results of the measurements of the concentration in the air exceed the established limit value (0.1 fibres/cm3calculated as a weighted average over a reference period of 8 hours):
                      1. the workers concerned are informed as soon as possible about exceedances and their causes
                      2. the workers and/or their representatives in the undertaking are consulted with regard to the measures to be taken or, in urgent cases, are informed of the measures taken

                    17 OTHER PERSONS INVOLVED

                    17.1 WHO ELSE IS INVOLVED?

                    Most of the chapters in this guide are intended for the people whose work involves or may involve a risk of exposure to asbestos. However, there are other important people involved in the process. These include:

                    • the client (who commissions the work)
                    • the people involved in the construction of the building and the building services (architects, civil engineers, facility managers)
                    • the persons carrying out subcontract work in relation to the preparation of the asbestos removal or encapsulation work
                    • the persons who work or live in a building where asbestos work is carried out

                    anyone who might be affected by the works, e.g. passers-by, general public.

                    17.2 PARTICIPATION IN THE PLANNING OF THE ASBESTOS WORK

                    17.2.1 Selection of a contractor

                     

                    For the client seeking a contractor, it is important to consider the technical standards of the contractors' bids to prevent the following risks:

                    • Spread of asbestos contamination
                    • Exposure for other persons during the work
                    • Provide adequate documentation to ensure that all subsequent monitoring and maintenance of encapsulated or enclosed materials is effective and efficient.

                    The disruption caused by asbestos encapsulation or removal is very large. Therefore, it is important that the area is thoroughly inspected in order to be able to treat all asbestos-containing material at the same time.

                    When planning the asbestos work, the services and activities of those involved in the construction of the building and the maintenance of the buildings (architects, civil engineers, facility managers) must also be taken into account, as they may have to be modified or provided anew:

                    • Water, gas, electricity, central heating, air conditioning, ventilation, fire alarms - may need to be changed so that the building as a whole operates safely during asbestos works
                    • Water, gas, electricity, sewage, telephone - may need to be provided for the asbestos work.

                    17.3 RETAINED ASBESTOS-CONTAINING MATERIALS

                    If some or all of the asbestos-containing materials are left on site (either in good original condition, encapsulated, impregnated or enclosed), then:

                    - the materials left in place must be inspected regularly, at least once a year (frequency to be determined by the risk assessment), to ensure that they are still in good condition; the inspections must be documented

                    - the presence of the material must be considered in any future alteration or installation work that may affect it. This includes a management system so that the material is always considered when a contractor or worker undertakes work that affects the building structure

                    - a reporting system should be established so that all accidental damage to the material is recorded.

                    17.4 REFERENCE

                    After removal of the materials, completion of the work must be confirmed by clearance tests carried out by an independent organisation. This includes visual inspection and air sampling by an independent person to determine the concentration of fibres in the air. In most Member States of the European Union, the air samples are examined with a phase-contrast light microscope and the concentration must be below 0.01 fibres/cm3 for re-reference (see description of procedures in Chapter 16 ).

                    In addition, one Member State requires that after the removal of weakly bonded asbestos, the customer must arrange for a further air test to measure the concentration of asbestos fibres. In this Member State, satisfactory conditions are achieved when the measured concentration of asbestos fibres is below 0.005 fibres/cm3 in a sample examined with a transmission electron microscope.

                    17.5 WHAT YOU SHOULD DO

                    If you employ or supervise persons involved in any way in work with materials containing asbestos, you should:

                    • ensure that these workers understand their role in preventing or reducing exposure to themselves and/or others;
                    • ensure that all asbestos-containing materials left behind are monitored, managed and properly maintained;
                    • ensure that the technical offers of potential contractors show high standards in terms of controlling and avoiding asbestos exposure;
                    • Ensure that you meet the requirements of government regulations and laws, e.g. subcontractors must be licensed in some EU Member States.

                    If you carry out work in connection with asbestos work, you should:

                    • Understand your role in preventing or reducing exposure for yourself and/or others;
                    • use best practice as set out in this guide if your own work involves contact with asbestos-containing materials.

                    If you are a labour inspector, you should:

                    • look for evidence that all parties involved have fulfilled their obligations in relation to the prevention and reduction of exposure to asbestos (e.g. specifications in subcontracts, arrangements for diversion of supplies, inspection records and inspection plans, availability of documentation on asbestos-containing materials, etc.);
                    • verify that all parties have licences or certificates as required by national law or legislation.

                    review tests to determine whether action has been taken in situations where elevated fibre concentrations have been detected.

                      18 ASBESTOS IN OTHER PLACES (VEHICLES,MACHINES ETC.)

                      18.1 INTRODUCTION

                      Materials containing asbestos have been used in a wide range of applications and locations (as described in Chapter 4). Therefore, additional considerations are required in some situations. However, the general approach still applies, which is to: Risk assessment and written work plan (Chapter 5), Deciding what to do and whether the work is reportable (Chapter 6), Adequate training (Chapter 7) and the control and prevention of exposure to asbestos (Chapters 9 and 11 or 12).

                      18.2   DIVERSITY OF APPLICATIONS

                      Other uses of asbestos that may require special measures include:

                      • Vehicles (trains, ships, military vehicles such as tanks)
                      • Plant and equipment
                      • Decorative coatings (which cannot be clearly classified as reportable or non-reportable).

                      18.3   PROCEDURES TO AVOID EXPOSURE TO ASBESTOS

                      The same procedures always apply, no matter what asbestos work is involved:

                      • Avoiding exposure by containing the released dust (e.g. enclosure with airlocks).
                      • Dust suppression at the source (e.g. thorough humidification of the entire material).
                      • local exhaust ventilation (e.g. use of fans with high-performance particle filters or shadowing of the movement of the tool with an H-type hoover [the so-called "shadowed exhaust"]).
                      • personal protective equipment and suitable respiratory protective equipment
                      • Proper decontamination of persons
                      • proper waste disposal

                      18.4 PROBLEMS IN SPECIAL CASES

                      Some of the problems with some of the work mentioned above include the following:

                      • restricted access or space inside vehicles more generally (e.g. asbestos in engine rooms of ships or in restricted spaces inside military vehicles), restrictions on erecting effective enclosure, bringing in equipment and removing bagged or wrapped waste material
                      • Need to provide access (to asbestos-containing materials) through steel structures in ships or vehicles.
                      • Difficulties in dismantling some products and the need for welding or cutting to reach the asbestos-containing materials. 

                      In some Member States of the European Union, asbestos has been used in decorative coatings on ceilings and walls. Recent risk assessments in relation to work in these cases suggest that, provided appropriate techniques are used to minimise exposure to asbestos, they should be

                      • can be considered low-risk work and therefore not reportable Exposure to asbestos is prevented or reduced as follows:
                        1. Remove the coated panel as a whole and, if necessary, cut up the coating with a sharp knife to remove the panel.
                        2. Spray on a wetting agent and then carefully (manually) scrape off by means of shaded suction.
                        3. If the wall is wallpapered, use a steam wallpaper stripper to soften and peel the material.
                        4. NO dry grinding and NO electric grinding tools
                        5. Wet blasting techniques are NOT suitable for initial cleaning, but can be used for final removal of residues

                      If you employ people who are exposed to asbestos in their work, then you should:

                      • Use the best practices (as defined in this guide);
                      • ensure that workers are adequately instructed and informed about the risks;
                      • ensure that workers understand the importance of minimising exposure;
                      • carry out a risk assessment to determine possible exposure to asbestos;
                      • provide written instructions (work method) that prevent or reduce exposure as much as possible;
                      • Provide adequate and appropriate equipment (dust suppression and decontamination of persons, see chapter 12);
                      • organise adequate monitoring by an independent expert to determine the extent of actual exposure;
                      • comply with government legislation regarding work where exposure to asbestos is possible.

                      If your work involves potential exposure to asbestos, you should have received adequate training so that you:

                      • are aware of the risks of exposure to asbestos;
                      • understand the importance of keeping exposure as low as possible;
                      • follow the written instructions to avoid or reduce exposure;
                      • Use best practice as described in this guide to working with asbestos.

                      If you are a labour inspector, you should:

                      • ensure that an adequate and proper risk assessment is in place;
                      • check that the written instructions include an effective method of preventing or reducing exposure to asbestos;
                      • check that appropriate equipment is available (e.g. for dust suppression and personal protection) so that the written working methods can be followed;
                      • check that the equipment is inspected and maintained at sufficient intervals to ensure that it remains in good and serviceable condition;
                      • check whether national legislation is complied with in this respect.

                      Fig. 18.1 Asbestos in the brake lining of a truck


                      Fig. 18.2 Components containing asbestos in high-voltage switchgear

                      19 HEALTH SURVEILLANCE

                      19.1 THE MONITORING

                      The European Directive on the protection of workers from the risks related to exposure to asbestos (83/477/EEC, as last supplemented by Directive 2003/18/EC) specifies in Article 15 for workers carrying out notifiable work (as determined in Section 6.3):

                      "Before a worker is first exposed to asbestos dust or dust from materials containing asbestos, he must be given the opportunity to have a health check. This health check must include a special chest examination."

                      "Such health checks must be available at least once every three years during the exposure period.

                      A personal health record shall be established for each worker in accordance with national law and practice, as set out in the first subsection."

                      The health check includes a visit by a specialist (generally appointed in accordance with national legislation) with knowledge of the medical specifics of asbestos work.

                      Some complaints are indications that the worker is not fit enough to work safely in the conditions present during asbestos work. These are in particular diseases that may suddenly affect fitness for work in the enclosure with respiratory protective equipment on. Respiratory or cardiopulmonary conditions may also affect fitness for strenuous work when wearing respiratory protective equipment and in warm ambient conditions.

                      In some Member States of the European Union (e.g. the United Kingdom), the certificate of an asbestos-related examination only confirms that the examination has been carried out. If the risk assessment identifies risks such as strenuous work and warm environmental conditions, then the employer must also provide for a "fitness for work examination" in addition to the asbestos-related health check.

                      The health check may include an X-ray examination of the chest. This is done either by conventional X-ray examination or by computed tomography (CT). Computed tomography obtains X-ray data from different angles around the body and then uses computer calculations to produce cross-sectional images of the body. Conventional X-ray examinations cause a radiation exposure equivalent to 10 times the normal daily background radiation (cosmic radiation and naturally occurring radioactive materials). CT causes a greater radiation exposure than the conventional X-ray examination and is approximately equivalent to the natural radiation exposure over 3 years (see for example http://www.radiologyinfo.org/content/safety/xray_safety.htm#measuring_dosage). Unnecessary radiation exposure is to be avoided. The doctor will take the patient's interests into account when deciding whether such an examination is useful at all and at what time.

                      European Directive 83/477/EEC, most recently supplemented by Directive 2003/18/EC, states that "dworkers must be provided with information and advice on the health check they may undergo after the end of exposure".

                      In summary, the medical examination helps to ensure that the worker is fit for the work without compromising the effectiveness of measures designed to protect him or her from the risk of exposure to asbestos. Asbestos-related diseases often occur many years after exposure; only then can the signs of an asbestos-related disease be detected during the health check and the patient can be informed in an appropriate way.

                      19.2 WHAT YOU SHOULD DO

                      If you employ or supervise people whose work may involve exposure to asbestos, you should:

                      • Give workers whose work involves handling asbestos the opportunity to have a health check before starting work and at least every three years thereafter (or more frequently if specified by national legislation) until exposure to asbestos has ceased;
                      • for other workers at risk of possible exposure to asbestos, assess whether, based on the risk assessment (see Chapter 5 and section 3) a health check is recommended or required (according to national legislation);
                      • report notifiable diseases (such as asbestosis, lung cancer or mesothelioma) occurring in workers who have been exposed to asbestos in accordance with national legislation;
                      • keep records of health status and medical examinations. National legislation may specify the information that must be recorded (e.g. performance of an asbestos-related medical examination) and the minimum retention period for the records. Keep the records for at least 40 years. If your business closes, ensure that the medical records are stored in an appropriate, secure location (which may be specified in national legislation).
                      • ensure that all workers can be clearly attributed to these records.

                      If you are likely to be regularly exposed to asbestos in your work, you should:

                      • assume that health checks will be carried out and ask your employer about them if they are not;
                      • Know the importance of health checks to ensure you are fit enough to work in the conditions often associated with asbestos work, e.g. wearing respiratory protective equipment in warm ambient conditions;
                      • ask the doctor if you want information about the risks of exposure to asbestos;
                      • Be aware of the fact that an X-ray does not say that working practices are safe, as it can take 10 to 15 years for the effects of asbestos exposure to produce signs that can be detected in an X-ray;
                      • Take the opportunity to have your doctor give you advice on how to take the best possible care of your health.

                      You may be able to decide whether non-medical data will be collected from you for epidemiological studies. We recommend that you have this data collected, as this will allow the effectiveness of the health protection programmes to be verified.

                        If you are a labour inspector, you should:

                        • Ensure that the above recommendations have been implemented - as evidenced by the extent to which workers understand the health effects of exposure to asbestos -, that there is an understanding by the worker and employer of the necessary fitness requirements, and that health records are complete and clear;
                        • check whether national legislation is complied with in this respect.

                        20 BIBLIOGRAPHY

                        Asunción Calleja , Santos Hernández, Exposición al amianto en operaciones de retirada y demolición Guía de prevención. Centre de Seguretat i Condicions de Salut, en el Treball. Generalitat de Catalunya, Barcelona. Departamento de Salud Laboral de CC.OO. Realización Paralelo Edición, s.a. ISBN 84-87851-62-2 Depósito Legal M-18824-2002

                        Council Directive of 19 September 1983 on the protection of workers from the risks related to exposure to asbestos at work (second individual Directive within the meaning of Article 8 of Directive 80/1107/EEC) (83/477/EEC) (OJ L 263, 24.9.1983, p. 25), as supplemented by Directive 2003/18/EC of the European Parliament and of the Council of 27 March 2003 L 97 48 15.4.2003. http://europa.eu.int/eur-lex/en/consleg/pdf/1983/en_1983L0477_do_001.pdf

                        And for the French and German versions:

                        http://europa.eu.int/eur-lex/fr/consleg/pdf/1983/fr_1983L0477_do_001.pdf http://europa.eu.int/eur-lex/de/consleg/pdf/1983/de_1983L0477_do_001.pdf

                        COMMISSION DIRECTIVE 1999/77/EC of 26 July 1999 adapting to technical progress for the sixth time Annex I to Council Directive 76/769/EEC on the approximation of the laws, regulations and administrative provisions of the Member States relating to restrictions on the marketing and use of certain dangerous substances and preparations (asbestos). [COUNCIL DIRECTIVE 1999/77/EC of 26 July 1999 adapting to technical progress for the sixth time Annex I to Council Directive 76/769/EEC on the approximation of the laws, regulations and administrative provisions of the Member States relating to restrictions on the marketing and use of certain dangerous substances and preparations (asbestos)]. http://www.legaltext.ee/text/en/PH0638.htm 

                        Council Directive 92/57/EEC of 24 June 1992 on the implementation of minimum safety and health requirements at temporary or mobile construction sites (eighth individual Directive within the meaning of Article 16 (1) of Directive 89/391/EEC). [Council Directive 92/57/EEC of 24 June 1992 on the implementation of minimum safety and health requirements at temporary or mobile construction sites (eighth individual Directive within the meaning of Article 16 (1) of Directive 89/391/EEC). Official Journal L 245 , 26/08/1992 P. 0006 - 0022. Finnish Special Edition: Chapter 5 Volume 5 P. 0165. Swedish Special Edition: Chapter 5 Volume 5 P.0165

                        Corrigendum to Council Directive 92/57/EEC of 24 June 1992 on the implementation of minimum safety and health requirements at temporary or mobile construction sites (eighth individual Directive within the meaning of Article 16 (1) of Directive 89/391/EEC). June 1992 on the minimum safety and health requirements at temporary or mobile construction sites (eighth individual Directive within the meaning of Article 16 (1) of Directive 89/391/EEC) (OJ No L 245, 26. 8. 1992). Official Journal L 015 , 23/01/1993 P. 0034 - 0035

                        Albracht G Schwerdtfeger A. Herausforderung Asbest. Universum Verlagsanstalt.

                        Bard D, Boyle T, Burdett G. Final report on the development of practical guidelines for the training of asbestos removal workers. Report for DGV under agreement number VG/1999/5190. Health and Safety Laboratory (now Buxton, UK).

                        British Standards Institution. PAS 60 Part 1 Equipment used in the controlled removal of asbestos-containing materials - Part 1: controlled wetting of asbestos-containing materials - Specification. Available from BSI Customer Service +44 (0)208 996 9001. www.bsi- global.com

                        British Standards Institution. PAS 60 Part 2 Equipment used in the controlled removal of asbestos-containing materials - Part 2: Negative pressure units - Specification. Available from BSI Customer Service +44 (0)208 996 9001. www.bsi-global.com

                        British Standards Institution. PAS 60 Part 3 Equipment used in the controlled removal of asbestos-containing materials - Part 3: Operation, cleaning and maintenance of class H vacuum cleaners - Code of practice. Available from BSI Customer Services +44 (0)208 996 9001. www.bsi-global.com

                        Institut National de Recherche et de Securité (INRS). (1st edition 1997; edition of April 2005.) Exposition à l'amiante dans les travaux d'entretien et de maintenance; Guide de Prevention. ED 809. www.inrs.fr

                        Institut National de Recherche et de Securité (INRS). Travaux de retraite ou de confinement d'amiante ou de materiaux en contenant. Guide de Prevention. ED 815. www.inrs.fr

                        Institut National de Recherche et de Securité (INRS). Diagnostic et traitment des flocages à base d'amiante. Guide Methodologique. ED 734. www.inrs.fr

                        NÅR DU STØDER PÅ ASBEST. (If you encounter asbestos). Branche ArbejdsmiljøRådet; for Bygge & Anlæg, Ramsingsvej 7,2500 Valby; e-mail sekr@bar-ba.dk. www.bar-ba.dk

                        UK Actuaries (2004). UK Asbestos - the definitive guide. http://www.actuaries.org.uk/files/pdf/proceedings/giro2004/Lowe.pdf

                        UK Health and Safety Executive Surveying, sampling and assessment of asbestos containing materials. MDHS 100 http://www.hse.gov.uk/pubns/mdhs/pdfs/mdhs100.pdf

                        UK Health and Safety Executive. (2001) Asbestos essentials task manual: task guidance sheets for the building maintenance and allied trades. HSG210. HSE Books ISBN 0 7176 1887 0

                        UK Health and Safety Executive. (2001) Introduction to asbestos essentials: comprehensive guidance on working with asbestos in the building maintenance and allied trades. HSG213. HSE Books ISBN 0 7176 0901 X

                        UK Health and Safety Executive. (2004) Managing asbestos: your new legal duties. INDG223(rev3).

                        UK Health and Safety Executive. (2004) Asbestos alert for building maintenance, repair and refurbishment workers. INDG 18 ISBN 0 7176 1209 

                        UK Health And Safety Executive (2003) 2/03 Method statement aide memoire. Issued by the HSE Asbestos Licensing Unit. http://www.hse.gov.uk/aboutus/meetings/alg/policy/02-03.pdf

                        UK Health and Safety Executive. Controlled asbestos stripping techniques for work requiring a licence. HSG189/1. HSE Books.

                        UK Health and Safety Executive. The selection, use and maintenance of respiratory protective equipment -a practical guide HSG53. HSE Books ISBN 0 7176 1537 5

                        UK Health and Safety Executive. (1999) Selection of suitable respiratory protective equipment for work with asbestos, Free of charge. HSE brochure INDG 288: http://www.hse.gov.uk/pubns/indg288.pdf

                        UK Health and Safety Executive HSE Information Sheet MISC614. Preventing falls from boom-type mobile elevating work platforms http://www.hse.gov.uk/pubns/misc614.pdf

                        UK Health and Safety Executive (2002) A comprehensive guide to managing asbestos in premises HSG227 HSE Books 2002 ISBN 0 7176 2381 5

                        Virta, RL., "Worldwide Asbestos Supply and Consumption Trends from 1900 to 2000", U.S Department of the Interior US. Geological Survey (2003) http://pubs.usgs.gov/of/2003/of03- 083/of03-083.pdf

                        World Health Organisation (1997 Determination of airborne fibre concentrations. A recommended method, by phase-contrast optical microscopy (membrane filter method), WHO, Genoa 1997 (ISBN 92 4 154496 1).

                        Zieschang H, Seifert M, Brückner B Au M. (1993) Proceedings of the European Asbestos Conference 2003. 03.-06.09.2003 at the BG Akadamie Dresden. ISBN 3-00-013020-9.

                        21 ANNEX 1

                        Typical exposures during work with asbestos boarding, asbestos coatings and asbestos insulating panels (UK Health and Safety Executive 1999, HSG 189/1; UK HSE (2003) INDG 288(rev1)) and asbestos cement UK HSE HSG 189/2). See notes at the bottom of the page.

                        Notes:

                        1. Some of the findings show the consequences of unacceptable non-optimal If controlled ablation techniques are used but not applied correctly, this can lead to a high concentration of theairborne fibres. A makeshift humidification is often better than uncontrolled dry removal.
                        2. The exposures given are typical The same process at different locations may result in higher or lower concentrations.
                        3. The exposures refer to the working period and are not time averages.

                        Typical exposures during work with asbestos cement (UK HSE HSG 189/2). See notes at the bottom of the first table in Annex 1.

                        The above exposure concentrations refer to the working period and are not calculated as time averages. For longer working periods, time-average values can be reached that exceed 0.1 fibres/cm3 lie.

                        Further data on occupational exposures to asbestos are available online in the Evalutil database.

                        "Evalutil is a database on occupational exposures to asbestos and man-made mineral fibres (PMFs) that can be accessed directly on the Internet. It is designed to provide guidance for those involved in public health and prevention: Occupational physicians, safety engineers, members of the company's occupational safety committee, researchers and others.

                        Evalutil consists of three databases: two factual databases, one on asbestos fibres and the other on CMFs, and a job-exposure matrix (JEM) for asbestos only. The metrological and descriptive data in the factual databases come from scientific literature and technical reports on prevention and institutions. The asbestos JEM provides information on asbestos exposures assessed by experts for a large number of works. However, in its current state, a query does not generate a link between available information.

                        Although the information provided by the document database concerns specific situations, it nevertheless provides very useful indications about risks associated with some work situations. However, this information cannot replace a careful analysis and risk assessment of each situation by experts, as certain readings may be associated with different work or a work area with different work.

                        The form and content of Evalutil has been under constant review and improvement since 1992. Further development of Evalutil will continue in the coming years through updates to the existing databases and improvements to the web interface to facilitate greater use.."

                        The internet address of the database is: http://etudes.isped.u-bordeaux2.fr/evalutil.

                        en_GB